Pure and Applied Geophysics

, Volume 175, Issue 12, pp 4537–4566 | Cite as

Evaluation of Microphysics and Cumulus Schemes of WRF for Forecasting of Heavy Monsoon Rainfall over the Southeastern Hilly Region of Bangladesh

  • Md Alfi Hasan
  • A. K. M. Saiful IslamEmail author


Accurate forecasting of heavy rainfall is crucial for the improvement of flood warning to prevent loss of life and property damage due to flash-flood-related landslides in the hilly region of Bangladesh. Forecasting heavy rainfall events is challenging where microphysics and cumulus parameterization schemes of Weather Research and Forecast (WRF) model play an important role. In this study, a comparison was made between observed and simulated rainfall using 19 different combinations of microphysics and cumulus schemes available in WRF over Bangladesh. Two severe rainfall events during 11th June 2007 and 24–27th June 2012, over the eastern hilly region of Bangladesh, were selected for performance evaluation using a number of indicators. A combination of the Stony Brook University microphysics scheme with Tiedtke cumulus scheme is found as the most suitable scheme for reproducing those events. Another combination of the single-moment 6-class microphysics scheme with New Grell 3D cumulus schemes also showed reasonable performance in forecasting heavy rainfall over this region. The sensitivity analysis confirms that cumulus schemes play a greater role than microphysics schemes for reproducing the heavy rainfall events using WRF.


Model evaluation microphysics scheme cumulus scheme numerical weather prediction 

Supplementary material

24_2018_1876_MOESM1_ESM.docx (102 kb)
Supplementary material 1 (DOCX 101 kb)


  1. Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P. P., Janowiak, J., et al. (2003). The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). Journal of Hydrometeorology, 4(6), 1147–1167.CrossRefGoogle Scholar
  2. Ahasan, M. N., Chowdhury, M. A. M., & Quadir, D. A. (2011). Simulation of a heavy rainfall event on 14 September 2004 over Dhaka, Bangladesh using MM5 model. Journal of Scientific Research, 3(2), 261–270.CrossRefGoogle Scholar
  3. Ahasan, M., Chowdhury, M., & Quadir, D. (2013a). Simulation of high impact rainfall events over southeastern hilly region of Bangladesh using MM5 model. Sci: International Journal of Atmospheric Sciences.CrossRefGoogle Scholar
  4. Ahasan, M. N., Rayhun, K. M. Z., Mannan. M. A., & Debsarma, S. K. (2013b). Synoptic analysis of a heavy rainfall event over southeast region of Bangladesh using WRF model. Journal of Scientific Research, 5(3), 421–434.CrossRefGoogle Scholar
  5. Ahasan, M., Chowdhury, M., & Quadir, D. (2014). Sensitivity test of parameterization schemes of mm5 model for prediction of the high impact rainfall events over Bangladesh. Journal of Mechanical Engineering, 44(1), 33–42.CrossRefGoogle Scholar
  6. Ahasan, M. N., & Debsarma, S. K. (2015). Impact of data assimilation in simulation of thunderstorm (squall line) event over Bangladesh using WRF model, during SAARC–STORM Pilot Field Experiment 2011. Natural Hazards, 75(2), 1009–1022.CrossRefGoogle Scholar
  7. Ali, H., & Mishra, V. (2017). Contrasting response of rainfall extremes to increase in surface air and dewpoint temperatures at urban locations in India. Scientific Reports, 7(1), 1228.CrossRefGoogle Scholar
  8. Bangladesh Meteorological Department (BMD) (2016). Numerical weather prediction (NWP) products - WRF forecast. Accessed 24 Oct 2016.
  9. Bhaskaran, B., Ramachandran, A., Jones, R., & Moufouma-Okia, W. (2012). Regional climate model applications on sub-regional scales over the Indian monsoon region: The role of domain size on downscaling uncertainty. Journal of Geophysical Research: Atmospheres, 117(D10), 1–12.CrossRefGoogle Scholar
  10. Bukovsky, M. S., & Karoly, D. J. (2009). Precipitation simulations using WRF as a nested regional climate model. Journal of Applied Meteorology and Climatology, 48(10), 2152–2159.CrossRefGoogle Scholar
  11. Chang, C. P., & Krishnamurti, T. N. (1987). Monsoon meteorology. Oxford: Oxford University Press.Google Scholar
  12. Chen, F., & Dudhia, J. (2001). Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Monthly Weather Review, 129(4), 569–585.CrossRefGoogle Scholar
  13. Chowdhury, M. D., & Ward, N. (2004). Hydro-meteorological variability in the greater Ganges–Brahmaputra–Meghna basins. International Journal of Climatology, 24(12), 1495–1508.CrossRefGoogle Scholar
  14. Cossu, F., & Hocke, K. (2014). Influence of microphysical schemes on atmospheric water in the Weather Research and Forecasting model. Geoscientific Model Development, 7(1), 147–160.CrossRefGoogle Scholar
  15. Das, P. K. (1988). The monsoons. India: National Book Trust.Google Scholar
  16. Das, M. K., Debsarma, S. K., Das, S., & Chowdhury, M. (2011). Tornadic storms of 2008 over Bangladesh: observed by radar and simulated by using WRF-ARW model 6th European Conference on Severe Storms (ECSS 2011), Balearic Islands, Spain.Google Scholar
  17. Das, et al. (2008). Skills of different mesoscale models over Indian region during monsoon season: forecast errors. Journal of Earth System Science, 117(5), 603–620.CrossRefGoogle Scholar
  18. De Silva, G. T., Herath, S., Weerakoon, S. B., & Rathnayake, U. R. (2010). Application of WRF with different cumulus parameterization schemes for precipitation forecasting in a tropical river basin. In Proceedings of the 13th asian congress of fluid mechanics (vol. 1, pp. 513–516).Google Scholar
  19. Deb, S., Srivastava, T., & Kishtawal, C. (2008). The WRF model performance for the simulation of heavy precipitating events over Ahmedabad during August 2006. Journal of Earth System Science, 117(5), 589–602.CrossRefGoogle Scholar
  20. Done, J., Davis, C. A., & Weisman, M. (2004). The next generation of NWP: Explicit forecasts of convection using the Weather Research and Forecasting (WRF) model. Atmospheric Science Letters, 5(6), 110–117.CrossRefGoogle Scholar
  21. Doswell, C. A., III. (2004). Weather forecasting by humans—heuristics and decision making. Weather Forecasting, 19(6), 1115–1126.CrossRefGoogle Scholar
  22. Dudhia, J. (1989). Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. Journal of the Atmospheric Sciences, 46(20), 3077–3107.CrossRefGoogle Scholar
  23. Ebert, E., & McBride, J. (2000). Verification of precipitation in weather systems: determination of systematic errors. Journal of Hydrology, 239(1), 179–202.CrossRefGoogle Scholar
  24. Gilbert, G. F. (1884). Finley’s tornado predictions. American Meteorological Journal, 1, 166–172.Google Scholar
  25. Grell, G. A., & Dévényi, D. (2002). A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophysical Research Letters, 29(14), 38–41.CrossRefGoogle Scholar
  26. Gruber, A., & Levizzani, V. (2008). Assessment of global precipitation products. WCRP-128, WMO Technical Document, 1430, 57.Google Scholar
  27. Gupta, H. V., Sorooshian, S., & Yapo, P. O. (1999). Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration. Journal of Hydrologic Engineering, 4(2), 135–143.CrossRefGoogle Scholar
  28. Haines, A., Kovats, R. S., Campbell-Lendrum, D., & Corvalán, C. (2006). Climate change and human health: Impacts, vulnerability and public health. Public Health, 120(7), 585–596.CrossRefGoogle Scholar
  29. Hasan, M. A., & Islam, A. K. M. S. (2012). Changes of seasonal temperature extremes in future over Bangladesh using projections by a regional climate model. In Proceedings of the national seminar climate change impact and adaptation, Gazipur (pp. 116–120).Google Scholar
  30. Hasan, M.A, Islam, A.S, & Bhaskaran, B. (2013). Predicting future precipitation and temperature over Bangladesh using high resolution regional scenarios generated by multi-member ensemble climate simulations. In Proceedings of the 4th international conference on water & flood management (ICWFM-2013), Dhaka (vol. 1, pp. 575–582).Google Scholar
  31. Hong, S. Y., & Lim, J. O. J. (2006). The WRF single-moment 6-class microphysics scheme (WSM6). Journal of the Korean Meteorological Society, 42(2), 129–151.Google Scholar
  32. Huffman, G. J., Adler, R. F., Bolvin, D. T., Gu, G., Nelkin, E. J., Bowman, K. P., et al. (2007). The TRMM multi-satellite precipitation analysis: Quasi-global, multi-year, combined-sensor precipitation estimates at fine scale. Journal of Hydrometeorology, 8, 38–55.CrossRefGoogle Scholar
  33. Im, E. S., In, S. R., & Han, S. O. (2013). Numerical simulation of the heavy rainfall caused by a convection band over Korea: a case study on the comparison of WRF and CReSS. Natural Hazards, 69(3), 1681–1695.CrossRefGoogle Scholar
  34. Islam, M. N., & Uyeda, H. (2007). Use of TRMM in determining the climatic characteristics of rainfall over Bangladesh. Remote Sensing of Environment, 108(3), 264–276.CrossRefGoogle Scholar
  35. Jacobson, M. Z. (2005). Fundamentals of atmospheric modeling. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  36. Janjic, Z. I. (1994). The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Monthly Weather Reviews, 122(5), 927–945.CrossRefGoogle Scholar
  37. Janjic, Z. I. (2000). Comments on “Development and evaluation of a convection scheme for use in climate models”. Journal of the Atmospheric Sciences, 57(21), 3686.CrossRefGoogle Scholar
  38. Kain, J. S. (2004). The Kain-Fritsch convective parameterization: an update. Journal of Applied Meteorology, 43(1), 170–181.CrossRefGoogle Scholar
  39. Kain, J. S., & Fritsch, J. M. (1993). Convective parameterization for mesoscale models: the Kain–Fritsch scheme. In The representation of cumulus convection in numerical models (pp. 165–170). Boston, MA: American Meteorological Society.Google Scholar
  40. Kessler, E. (1969). On the distribution and continuity of water substance in atmospheric circulation. In On the distribution and continuity of water substance in atmospheric circulations (pp. 1–84). Boston, MA: American Meteorological Society.Google Scholar
  41. Krishnamurthy, V., & Kinter, III J. L. (2003). The Indian monsoon and its relation to global climate variability. In Global Climate (pp. 186–236) Springer, Berlin.Google Scholar
  42. Kumar, A., Dudhia, J., & Bhowmik, S. (2010). Evaluation of Physics options of the Weather Research and Forecasting (WRF) Model to simulate high impact heavy rainfall events over Indian Monsoon region. Geofizika, 27(2), 101–125.Google Scholar
  43. Kumar, A., Dudhia, J., Rotunno, R., Niyogi, D., & Mohanty, U. (2008). Analysis of the 26 July 2005 heavy rain event over Mumbai, India using the Weather Research and Forecasting (WRF) model. Quarterly Journal of the Royal Meteorological Society, 134(636), 1897–1910.CrossRefGoogle Scholar
  44. Kumar, et al. (2012). Simulations over South Asia using the weather research and forecasting model with chemistry (WRF-Chem): chemistry evaluation and initial results. Geoscientific Model Development, 5(1), 1–66.CrossRefGoogle Scholar
  45. Lin, Y., & Colle, B. A. (2011). A new bulk microphysical scheme that includes riming intensity and temperature-dependent ice characteristics. Monthly Weather Review, 139(3), 1013–1035.CrossRefGoogle Scholar
  46. Lin, Y. L., Farley, R. D., & Orville, H. D. (1983). Bulk parameterization of the snow field in a cloud model. Journal of Climate and Applied Meteorology, 22(6), 1065–1092.CrossRefGoogle Scholar
  47. Litta, A., & Mohanty, U. (2008). Simulation of a severe thunderstorm event during the field experiment of STORM programme 2006, using WRF-NMM model. Current Science, 95(2), 204–215.Google Scholar
  48. Mannan, M. A., Chowdhury, M. A. M., & Karmakar, S. (2013). Application of NWP model in prediction of heavy rainfall in Bangladesh. Procedia Engineering, 56, 667–675.CrossRefGoogle Scholar
  49. Maussion, et al. (2011). WRF simulation of a precipitation event over the Tibetan Plateau, China—an assessment using remote sensing and ground observations. Hydrology and Earth System Sciences, 15, 1795–1817.CrossRefGoogle Scholar
  50. Mirza, M. M. Q. (2002). Global warming and changes in the probability of occurrence of floods in Bangladesh and implications. Global Environmental Change, 12(2), 127–138.CrossRefGoogle Scholar
  51. Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., & Clough, S. A. (1997). Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. Journal of Geophysical Research: Atmospheres, 102(D14), 16663–16682.CrossRefGoogle Scholar
  52. Mohanty, U. C., Routray, A., Osuri, K. K., & Prasad, S. K. (2012). A study on simulation of heavy rainfall events over Indian region with ARW-3DVAR modeling system. Pure and Applied Geophysics, 169(3), 381–399.CrossRefGoogle Scholar
  53. Monin, A. S., & Obukhov, A. M. F. (1954). Basic laws of turbulent mixing in the surface layer of the atmosphere. Contribution of Geophysics Institute Academic Science USSR, 151(163), e187.Google Scholar
  54. Mooney, P., Mulligan, F., & Fealy, R. (2013). Evaluation of the sensitivity of the weather research and forecasting model to parameterization schemes for regional climates of Europe over the period 1990–95. Journal of Climate, 26(3), 1002–1017.CrossRefGoogle Scholar
  55. Mukhopadhyay, P., Taraphdar, S., & Goswami, B. N. (2011). Influence of moist processes on track and intensity forecast of cyclones over the north Indian Ocean. Journal of Geophysical Research: Atmospheres, 116(D5).Google Scholar
  56. Murshed, S. B., Islam, A. K. M. S., & Khan, M. S. A. (2011). Impact of climate change on rainfall intensity in Bangladesh. In Proceedings of the 3rd international conference on water and flood management, Dhaka (pp. 881–890).Google Scholar
  57. Pan, H. L., & Wu, W. S. (1995). Implementing a mass flux convection parameterization package for the NMC medium-range forecast model. NMC Office Note, 409(40), 20–233.Google Scholar
  58. Pattanaik, D., & Rao, Y. R. (2009). Track prediction of very severe cyclone ‘Nargis’ using high resolution weather research forecasting (WRF) model. Journal of Earth System Science, 118(4), 309–329.CrossRefGoogle Scholar
  59. Pattanayak, S., & Mohanty, U. (2008). A comparative study on performance of MM5 and WRF models in simulation of tropical cyclones over Indian seas. Current Science, 95(7), 923–936.Google Scholar
  60. Prein, A. F., Langhans, W., Fosser, G., Ferrone, A., Ban, N., Goergen, K., et al. (2015). A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges. Reviews of Geophysics, 53(2), 323–361.CrossRefGoogle Scholar
  61. Que, Z. P., Wu, F., Bi, C., Long, Y. L., & Li, C. Y. (2016). Impacts of monthly anomalies of intraseasonal oscillation over South China sea and South Asia on the activity of summer monsoon and rainfall in Eastern China. Journal of Tropical Meteorology, 22(2), 145.Google Scholar
  62. Rafiuddin, M., Uyeda, H., & Islam, M. N. (2010). Characteristics of monsoon precipitation systems in and around Bangladesh. International Journal of Climatology, 30(7), 1042–1055.Google Scholar
  63. Raghavan, K. (1973). Break-monsoon over India. Monthly Weather Reviews, 101(1), 33–43.CrossRefGoogle Scholar
  64. Rajeevan, M., Kesarkar, A., Thampi, S. B., Rao, T. N., Radhakrishna, B., & Rajasekhar, M. (2010). Sensitivity of WRF cloud microphysics to simulations of a severe thunderstorm event over Southeast India, In Annales Geophysicae (vol. 28, no. 2, pp. 603–619).Google Scholar
  65. Ratnam, J. V., & Cox, E. (2006). Simulation of monsoon depressions using MM5: sensitivity to cumulus parameterization schemes. Meteorology and Atmospheric Physics, 93(1–2), 53–78.CrossRefGoogle Scholar
  66. Routray, A., Mohanty, U., Niyogi, D., Rizvi, S., & Osuri, K. K. (2010). Simulation of heavy rainfall events over Indian monsoon region using WRF-3DVAR data assimilation system. Meteorology and Atmospheric Physics, 106(1–2), 107–125.CrossRefGoogle Scholar
  67. Sarker, A. A., & Rashid, A. M. (2013). Landslide and flashflood in Bangladesh, disaster risk reduction approaches in Bangladesh (pp. 165–189). Berlin: Springer.CrossRefGoogle Scholar
  68. Schneider, U., Fuchs, T., Meyer-Christoffer, A., & Rudolf, B. (2008). Global precipitation analysis products of the GPCC. In Global Precipitation Climatology Centre (GPCC), DWD, Internet Publikation (pp. 1–12).Google Scholar
  69. Shah, S., Rao, B., Kumar, P., & Pal, P. (2010). Verification of cloud cover forecast with INSAT observation over western Indian. Journal of Earth System Science, 119(6), 775–781.CrossRefGoogle Scholar
  70. Shahid, S. (2010). Rainfall variability and the trends of wet and dry periods in Bangladesh. International Journal of Climatology, 30(15), 2299–2313.CrossRefGoogle Scholar
  71. Smagorinsky, J. (1963). General circulation experiments with the primitive equations: I. The basic experiment. Monthly Weather Review, 91(3), 99–164.CrossRefGoogle Scholar
  72. Sohrabinia, M., Rack, W., & Zawar-Reza, P. (2012). Analysis of MODIS LST compared with WRF model and in situ data over the Waimakariri River basin, Canterbury, New Zealand. Remote Sensing, 4(11), 3501–3527.CrossRefGoogle Scholar
  73. Stergiou, I., Tagaris, E., & Sotiropoulou, R. E. P. (2017). Sensitivity assessment of WRF parameterizations over Europe. In Multidisciplinary digital publishing institute proceedings (vol. 1, no. 5, p. 119)Google Scholar
  74. Thapliyal, V. (1997). Preliminary and final long range forecast for seasonal monsoon rainfall over India. Journal of Arid Environments, 36(3), 385–403.CrossRefGoogle Scholar
  75. Tiedtke, M. I. C. H. A. E. L. (1989). A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Monthly Weather Review, 117(8), 1779–1800.CrossRefGoogle Scholar
  76. Unit UoEACR, Regions t, Project CIL. (1997). Climate impacts LINK Project: Applying results from the Hadley Centre’s climate change experiments for climate change impacts assessments. University of East Anglia, Climatic Research Unit.Google Scholar
  77. Wang, W., Bruyère, C., Duda, M., Dudhia, J., Gill, D., & Lin, H. C. (2009). ARW version 3 modelling system user’s guide.Google Scholar
  78. Wardah, T., Kamil, A. A., Sahol Hamid, A. B., & Maisarah, W. W. I. (2009). Quantitative precipitation forecast using MM5 and WRF models for Kelantan River basin. International Journal of Geological and Environmental Engineering, 5(11), 712–716.Google Scholar
  79. Warner, T. T. (2011). Numerical weather and climate prediction, 526. Cambridge: Cambridge University Press.Google Scholar
  80. Webster, P. J., Magana, V. O., Palmer, T. N., Shukla, J., Tomas, R. A., Yanai, M. U., et al. (1998). Monsoons: Processes, predictability, and the prospects for prediction. Journal of Geophysical Research: Oceans, 103(C7), 14451–14510.CrossRefGoogle Scholar
  81. Yatagai, et al. (2012). APHRODITE: Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bulletin of the American Meteorological Society, 93(9), 1401–1415.CrossRefGoogle Scholar
  82. Yeh, H. C., & Chen, G. T. J. (2004). Case study of an unusually heavy rain event over eastern Taiwan during the Mei-yu season. Monthly Weather Review, 132(1), 320–337.CrossRefGoogle Scholar
  83. Zeyaeyan, S., Fattahi, E., Ranjbar, A., Azadi, M., & Vazifedoust, M. (2017). Evaluating the effect of physics schemes in WRF simulations of summer rainfall in North West Iran. Climate, 5(3), 48.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Water and Flood Management (IWFM)Bangladesh University of Engineering and Technology (BUET)DhakaBangladesh

Personalised recommendations