Pure and Applied Geophysics

, Volume 175, Issue 5, pp 1765–1781 | Cite as

Cansiglio Karst Plateau: 10 Years of Geodetic–Hydrological Observations in Seismically Active Northeast Italy

  • Barbara Grillo
  • Carla BraitenbergEmail author
  • Ildikó Nagy
  • Roberto Devoti
  • David Zuliani
  • Paolo Fabris


Ten years’ geodetic observations (2006–2016) in a natural cave of the Cansiglio Plateau (Bus de la Genziana), a limestone karstic area in northeastern Italy, are discussed. The area is of medium–high seismic risk: a strong earthquake in 1936 below the plateau (Mm = 6.2) and the 1976 disastrous Friuli earthquake (Mm = 6.5) are recent events. At the foothills of the karstic massif, three springs emerge, with average flow from 5 to 10 m3/s, and which are the sources of a river. The tiltmeter station is set in a natural cavity that is part of a karstic system. From March 2013, a multiparametric logger (temperature, stage, electrical conductivity) was installed in the siphon at the bottom of the cave to discover the underground hydrodynamics. The tilt records include signals induced by hydrologic and tectonic effects. The tiltmeter signals have a clear correlation to the rainfall, the discharge series of the river and the data recorded by multiparametric loggers. Additionally, the data of a permanent GPS station located on the southern slopes of the Cansiglio Massif (CANV) show also a clear correspondence with the river level. The fast water infiltration into the epikarst, closely related to daily rainfall, is distinguished in the tilt records from the characteristic time evolution of the karstic springs, which have an impulsive level increase with successive exponential decay. It demonstrates the usefulness of geodetic measurements to reveal the hydrological response of the karst. One outcome of the work is that the tiltmeters can be used as proxies for the presence of flow channels and the pressure that builds up due to the water flow. With 10 years of data, a new multidisciplinary frontier was opened between the geodetic studies and the karstic hydrogeology to obtain a more complete geologic description of the karst plateau.


Geodesy karst hydrogeology GPS tilt measurements 



We thank Alberto Casagrande for the constant engagement and for the precious collaboration; A.R.P.A. Veneto Centro Meteorologico of Teolo for providing the meteorological data; Ivano di Fant (Ufficio Idrografico del Servizio Gestione delle Risorse Idriche—Friuli Venezia Giulia) for the hydrometrical data of Livenza River; Dr. Alberto Riva for providing the geological map; OGS-RSC Working Group for publishing the local seismicity on their homepage; Dr. Paola Favero and the Comando Forestale of Pian Cansiglio for the hospitality and the collaboration; the local cavers (in particular, the speleologists of Unione Speleologica Pordenonese CAI Pordenone) for the support and collaboration in the installation and sampling of the diver in the bottom of Bus de la Genziana. We acknowledge the use of the GMT software (Wessel et al. 2013). We thank Georg Kaufmann and an anonymous reviewer for meticulous reviews.


  1. A.R.P.A. F.V.G. (2006). Rilevamento dello stato dei corpi idrici sotterranei della Regione Friuli Venezia Giulia (Survey on the state of underground hydrologic units of the Friuli Venezia Giulia Region). Final Report, pp. 68–71. Regione Autonoma Friuli Venezia Giulia.Google Scholar
  2. Battaglia, M., Zuliani, D., Pascutti, D., Michelini, A., Marson, I., Murray, M. H., et al. (2003). Network assesses earthquake potential in Italy’s Southern Alps. EOS, 84(28), 262–264.CrossRefGoogle Scholar
  3. Boy, J.-P., Longuevergne, L., Boudin, F., Jacob, T., Lyard, F., Llubes, M., et al. (2009). Modelling atmospheric and induced non-tidal oceanic loading contributions to surface gravity and tilt measurements. Journal of Geodynamics. Scholar
  4. Braitenberg, C. (1999a). The Friuli (NE Italy) tilt/strain gauges and short term observations. Annali di Geofisica, 42, 1–28. Scholar
  5. Braitenberg, C. (1999b). Estimating the hydrologic induced signal in geodetic measurements with predicitive filtering methods. Geophysical Research Letters, 26, 775–778.CrossRefGoogle Scholar
  6. Braitenberg, C. (1999c). The hydrologic induced strain—A review. Marees Terrestres Bulletin D’Informations, 131, 1071–1081.Google Scholar
  7. Braitenberg, C., Grillo, B., Nagy, I., Zidarich, S., & Piccin, A. (2007). La stazione geodetico—geofisica ipogea del Bus de la Genziana (1000VTV)—Pian Cansiglio. Atti e Memorie della C.G.E.B., S.A.G. CAI, Trieste, Italia, 41, 105–120.Google Scholar
  8. Bressan, G., Bragato, P. L., & Venturini, C. (2003). Stress and strain tensors based on focal mechanisms in the seismotectonic framework of the Friuli-Venezia Giulia Region (Northeastern Italy). Bulletin of the Seismological Society of America, 93, 1280–1297. Scholar
  9. Cancian, G., & Ghetti, S. (1989). Stratigrafia del Bus de la Genziana (Cansiglio, Prealpi Venete). Studi Trentini di Scienze Naturali—Acta Biologica, Trento, 65, 125–140.Google Scholar
  10. Cavallin, A. (1980). Assetto strutturale del Massiccio Cansiglio—Cavallo, Prealpi Carniche Occ. Atti del 2° Convegno di Studi sul Territorio della provincia di Pordenone (Piancavallo, 19–2 ottobre 1979).Google Scholar
  11. Cucchi, F., Forti, P., Giaconi, M., & Giorgetti, F. (1999). Note idrogeologiche sulle sorgenti del Fiume Livenza. Atti della Giornata Mondiale dell’Acqua “Acque Sotterranee: Risorsa Invisibile”, Roma, 23 marzo 1998 (Pubbl. n°1955 del GNDCI, LR49), pp. 51–60.Google Scholar
  12. Davis, D., Suppe, J., & Dahlen, F. A. (1983). Mechanics of fold and thrust belts and accretionary wedges. Journal of Geophysical Research, 88, 1153–1172.CrossRefGoogle Scholar
  13. Devoti, R., Falcucci, E., Gori, S., Poli, M.E., Zanferrari, A., et al.. (2016). Karstic slope “breathing”: Morpho-structural influence and hazard implication. Poster General Assembly EGU, Vienna.Google Scholar
  14. Devoti, R., Zuliani, D., Braitenberg, C., Fabris, P., & Grillo, B. (2015). Hydrologically induced slope deformations detected by GPS and clinometric surveys in the Cansiglio Plateau, southern Alps. Earth and Planetary Science Letters, 419, 134–142. Scholar
  15. Filippini, M., Casagrande, G., Fiorucci, A., Gargini, A., Grillo, B., Riva, A., et al. (2016). Geological and hydrogeological investigations for the design of a multitracer test in a major karst aquifer (Cansiglio-Cavallo, Italian Alps). Rendiconti online della Società Geologica Italiana, 39(suppl. 1). ISSN 2035-8008.Google Scholar
  16. Grillo, B. (2007). Contributo alle conoscenze idrogeologiche dell’Altopiano del Cansiglio. Atti e Memorie della C.G.E.B., S.A.G. CAI, Trieste, Italia, 41, 5–15.Google Scholar
  17. Grillo, B. (2010). Applicazioni geodetiche allo studio dell’idrogeologia del Cansiglio. AA. 2009–2010. Master Thesis, Environmental Sciences University of Trieste. Edizioni Accademiche Italiane. ISBN 978-3-639-66321-1.Google Scholar
  18. Grillo, B., & Braitenberg, C. (2015). Monitoraggio delle acque di fondo del Bus de la Genziana (Pian Cansiglio, Nord-Est Italia). Atti e Memorie della C.G.E.B., S.A.G. CAI, Trieste, Italia, 46, 3–14.Google Scholar
  19. Grillo, B., Braitenberg, C., Devoti, R., & Nagy, I. (2011). The study of karstic aquifers by geodetic measurements in Bus de la Genziana station—Cansiglio plateau (North-Eastern Italy). Acta Carsologica. Scholar
  20. Huang, W. J., & Johnson, K. M. (2016). A boundary element model of fault-cored anticlines incorporating the combined mechanisms of fault slip and buckling. Terrestrial, Atmospheric and Oceanic Sciences (TAO). Scholar
  21. Jahr, T. (2017). Non-tidal tilt and strain signals recorded at the Geodynamic Observatory Moxa, Thuringia/Germany. Geodesy and Geodynamics,. Scholar
  22. Jahr, T., Jentzsch, G., Gebauer, A., & Lau, T. (2008). Deformation, seismicity, and fluids: Results of the 2004/2005 water injection experiment at the KTB/Germany. Journal of Geophysical Research, 113(B11), 410.CrossRefGoogle Scholar
  23. Kroner, C., Jahr, T., Kuhlmann, S., & Fischer, K. D. (2005). Pressure-induced noise on horizontal seismometer and strainmeter records evaluated by finite element modeling. Geophysical Journal International, 161(1), 167–178. Scholar
  24. Longuevergne, L., Florsch, N., Boudin, F., Oudin, L., & Camerlynck, C. (2009). Tilt and strain deformation induced by hydrologically active natural fractures: Application to the tiltmeters installed in Sainte-Croix-aux-Mines observatory (France). Geophysical Journal International, 178, 667–677. Scholar
  25. OGS-RSC Working Group. (2012). Rete Sismica di Collalto.,
  26. Pettenati, F., & Sirovich, L. (2003). Source inversion of intensity patterns of earthquakes: A destructive shock in 1936 in the northeast Italy. Journal of Geophysical Research, 109, B10309. Scholar
  27. Pondrelli, S., Ekström, G., & Morelli, A. (2001). Seismotectonic re-evaluation of the 1976 Friuli, Italy, seismic sequence. Journal of Seismology, 5, 73–83. Scholar
  28. Priolo E., Romanelli, M., Plasencia Linares, M. P., Garbin, M., Peruzza, L., Romano, M. A., et al. (2015). Seismic monitoring of an underground natural gas storage facility: The Collalto Seismic Network. Seismological Research Letters, 86(1), 109–123 + esupp.
  29. Protezione Civile. (2015). Retrieved October 10, 2017, from
  30. Tenze, D., Braitenberg, C., & Nagy, I. (2012). Karst deformations due to environmental factors: Evidences from the horizontal pendulums of Grotta Gigante, Italy. Bollettino di Geofisica Teorica ed Applicata, 53, 331–345. Scholar
  31. Wang, R., & Kümpel, H.-J. (2003). Poroelasticity: Efficient modeling of strongly coupled, slow deformation processes in multilayered half-space. Geophysics, 68(2), 1–13. Scholar
  32. Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J. F., & Wobbe, F. (2013). Generic Mapping Tools: Improved version released. Eos Transactions American Geophysical Union, 94, 409–410.CrossRefGoogle Scholar
  33. Yeats, R. S. (1986). Active faults related to folding. In R. E. Wallace (Ed.), Active tectonics (pp. 63–79). Washington, DC: National Academy Press.Google Scholar
  34. Zadro, M., & Braitenberg, C. (1999). Measurements and interpretations of tilt-strain gauges in seismically active areas. Earth Science Reviews, 47, 151–187. Scholar
  35. Zuliani, D. (2003). FReDNet: una rete di ricevitori GPS per la valutazione del potenziale sismico nelle Alpi sudorientali italiane. GNGTS, Atti del 22° Convegno Nazionale, Roma, 18–20 November 2003.
  36. Zuliani, D., Priolo, E., Palmieri, F., & Fabris, P. (2009). Progetto GPS-RTK: una rete GPS per il posizionamento in tempo reale nel Friuli Venezia Giulia. Dimensione Geometra, 12, 30–36.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Barbara Grillo
    • 1
  • Carla Braitenberg
    • 1
    Email author
  • Ildikó Nagy
    • 1
  • Roberto Devoti
    • 2
  • David Zuliani
    • 3
  • Paolo Fabris
    • 3
  1. 1.Department of Mathematics and GeosciencesUniversity of TriesteTriesteItaly
  2. 2.Centro Nazionale TerremotiIstituto Nazionale di Geofisica e VulcanologiaRomeItaly
  3. 3.Centro di Ricerche Sismologiche - CRSOGS - Istituto Nazionale di Oceanografia e di Geofisica SperimentaleCussignacco, UdineItaly

Personalised recommendations