Water Masses in the Eastern Mediterranean Sea: An Analysis of Measured Isotopic Oxygen

  • Paola de Ruggiero
  • Davide Zanchettin
  • Manuel Bensi
  • Dagmar Hainbucher
  • Barbara Stenni
  • Stefano Pierini
  • Angelo Rubino


We investigate aspects of the water mass structure of the Adriatic and Ionian basins (Eastern Mediterranean Sea) and their interdecadal variability through statistical analyses focused on δ18Ο measurements carried out in 1985, 1990, and 2011. In particular, the more recent δ18Ο measurements extend throughout the entire water column and constitute, to the best of our knowledge, the largest synoptic dataset encompassing different sub-basins of the Mediterranean Sea. We study the statistical linkages between temperature, salinity, dissolved oxygen and δ18Ο. We find that δ18Ο is largely independent from the other parameters, and it can be used to trace major water masses that are typically found in the basins, including the Adriatic Dense Water, the Levantine Intermediate Water, and the Cretan Intermediate and Dense Waters. Finally, we explore the possibility of using δ18Ο concentration as a proxy for dominant modes of large-scale oceanic variability in the Mediterranean Sea.


Isotopic oxygen Adriatic Sea Ionian Sea water mass identification interdecadal variability 



This research was funded by the RITMARE Flagship Project of M.I.U.R., Italy (U.O. SP4_LI4_WP1_UO06_D01).


  1. Artegiani, A., Bregant, D., Paschini, E., Pinardi, N., Raicich, R., & Russo, A. (1997a). The Adriatic Sea general circulation. Part I: Air–sea interactions and water mass structure. Journal of Physical Oceanography, 27, 1492–1514.CrossRefGoogle Scholar
  2. Artegiani, A., Bregant, D., Paschini, E., Pinardi, N., Raicich, R., & Russo, A. (1997b). The Adriatic Sea General Circulation. Part II: Baroclinic circulation structure. Journal of Physical Oceanography, 27, 1515–1532.CrossRefGoogle Scholar
  3. Bensi, M., Rubino, A., Cardin, V., Hainbucher, D., & Mancero-Mosquera, I. (2013). Structure and variability of the abyssal water masses in the Ionian Sea in the period 2003–2010. Journal of Geophysical Research, 118, 931–943. Scholar
  4. Bensi, M., Velaoras, D., Meccia, L. V., & Cardin, V. (2016). Effects of the Eastern Mediterranean Sea circulation on the thermohaline properties as recorded by fixed deep-ocean observatories. Deep Sea Research—I, 112, 1–13. Scholar
  5. Bergamasco, A., & Malanotte-Rizzoli, P. (2010). The circulation of the Mediterranean Sea: A historical review of experimental investigations. Advances in Oceanography and Limnology, 1(1), 11–28.CrossRefGoogle Scholar
  6. Bethoux, J. P., Gentili, B., Morin, P., Nicolas, E., Pierre, C., & Ruiz-Pino, D. (1999). The Mediterranean Sea: A miniature ocean for climatic and environmental studies and a key for the climatic functioning of the North Atlantic. Progress in Oceanography, 44(1–3), 131–146. Scholar
  7. Borghini, M., Bryden, H., Schroeder, K., Sparnocchia, S., & Vetrano, A. (2014). The Mediterranean is becoming saltier. Ocean Science, 10, 693–700. Scholar
  8. Cardin, V., Civitarese, G., Hainbucher, D., Bensi, M., & Rubino, A. (2015). Thermohaline properties in the Eastern Mediterranean in the last three decades: Is the basin returning to the pre-EMT situation? Ocean Science, 11, 53–66.CrossRefGoogle Scholar
  9. Carniel, S., Bonaldo, D., Benetazzo, A., Bergamasco, A., Boldrin, A., Falcier, F. M., et al. (2016). Off-shelf fluxes across the southern Adriatic margin: Factors controlling dense-water-driven transport phenomena. Marine Geology, 375, 44–63.CrossRefGoogle Scholar
  10. Carpenter, J. H. (1965). The accuracy of the Winkler method for dissolved oxygen. Limnology and Oceanography, 10, 135–140.CrossRefGoogle Scholar
  11. Civitarese, G., Gačić, M., Borzelli, G. L., & Lipizer, M. (2010). On the impact of the Bimodal Oscillating System (BiOS) on the biogeochemistry and biology of the Adriatic and Ionian Seas (Eastern Mediterranean). Biogeosciences, 7, 3987–3997.CrossRefGoogle Scholar
  12. Craig, H., & Gordon, L. I. (1965). Deuterium and oxygen 18 variations in the ocean and the marine atmosphere. In E. Tongiorgi (Ed.), Stable isotopes in oceanographic studies and paleotemperatures (pp. 9–130). CNR: Spoleto.Google Scholar
  13. Epstein, S., & Mayeda, T. (1953). Variation of O18 content of waters from natural sources. Geochimica et Cosmochimica Acta, 4, 213–224.CrossRefGoogle Scholar
  14. Frew, R. D., Dennis, P. F., Heywood, K. J., Meredith, M. P., & Boswell, S. M. (2000). Deep-Sea Research Part I, 47, 2265–2286.CrossRefGoogle Scholar
  15. Gačić, M., Civitarese, G., Kovacević, Ursella L., Bensi, M., Menna, M., Cardin, V., et al. (2014). Extreme winter 2012 in the Adriatic: An example of climatic effect on the BiOS rhythm. Ocean Science, 10, 513–522.CrossRefGoogle Scholar
  16. Hainbucher, D., Rubino, A., Cardin, V., Tanhua, T., Schroeder, K., & Bensi, M. (2014). Hydrographic situation during cruise M84/3 and P414 (spring 2011) in the Mediterranean Sea. Ocean Science, 10, 669–682. Scholar
  17. Hainbucher, D., Rubino, A., & Klein, B. (2006). Water mass characteristics in the deep layers of the western Ionian Basin observed during May 2003. Geophysical Research Letters, 33, L05608. Scholar
  18. Hopkins, T. S. (1978). Physical processes in Mediterranean Estuaries. In: B. Kjerfue (ed.): Transport processe in Estuarine Environments, pp. 269–310. Seventh Bell W. Baruch Institute Marine Biology and Coastal Research Symposium, Georgetown, South Carolina.Google Scholar
  19. Kroopnick, P. (1985). The distribution of 13C of ΣCO2 in the world oceans. Deep Sea Research, 32(1), 57–84.CrossRefGoogle Scholar
  20. Malanotte-Rizzoli, P., Artale, V., Borzelli-Eusebi, G. L., Brenner, S., Crise, A., et al. (2014). Physical forcing and physical/biochemical variability of the Mediterranean Sea: A review of unresolved issues and directions for future research. Ocean Science, 10, 281–322.CrossRefGoogle Scholar
  21. Malanotte-Rizzoli, P., Manca, B., Ribera D’Alcalà, M., Theocharis, A., Bergamasco, A., Bregant, D., et al. (1997). A synthesis of the Ionian Sea hydrography, circulation and water mass pathways during POEM Phase I. Progress in Oceanography, 39, 153–204.CrossRefGoogle Scholar
  22. Manca, B. B., Budillon, G., Scarazzato, P., & Ursella, L. (2003). Evolution of dynamics in the eastern Mediterranean affecting water mass structures and properties in the Ionian and Adriatic Seas. Journal of Geophysical Research, 108, 8102. Scholar
  23. Manca, B. B., & Scarazzato, P. (2001). The two regimes of the intermediate deep circulation in the Ionian-Adriatic Seas. Archivio di Oceanografia e Limnologia, 22, 15–26.Google Scholar
  24. Meredith, M. P., Grose, K. E., McDonagh, E. L., & Heywood, K. J. (1999). Distribution of oxygen isotopes in the water masses of Drake Passage and the South Atlantic. Journal of Geophysical Research, 104(C9), 949–962.CrossRefGoogle Scholar
  25. Pierre, C. (1999). The oxygen and carbon isotope distribution in the Mediterranean water masses Mar. Geol., 153, 41–45.Google Scholar
  26. Pollak, M. J. (1951). The sources of deep water of the Eastern Mediterranean Sea. Journal of Marine Research, 10, 128–152.Google Scholar
  27. Roether, W., Klein, B., Manca, B. B., Theocharis, A., & Kioroglou, S. (2007). transient Eastern Mediterranean deep waters in response to the massive dense-water output of the Aegean Sea in the 1990s. Progress in Oceanography, 74, 540–571.CrossRefGoogle Scholar
  28. Roether, W., & Schlitzer, R. (1991). Eastern Mediterranean deep water renewal on the basis of cholorofluoromethane and tritium data. Dynamics of Atmospheres and Oceans, 15, 333–354.CrossRefGoogle Scholar
  29. Rohling, E. J., & Bryden, H. L. (1992). Man-induced salinity and temperature increases in western Mediterranean deep water. Journal of Geophysical Research, 97, 11191–11198.CrossRefGoogle Scholar
  30. Rubino, A., Bensi, M., Hainbucher, D., Zanchettin, D., Mapelli, F., Ogrinc, N., et al. (2016). Biogeochemical, isotopic and bacterial distributions trace oceanic abyssal circulation. PLoS One, 11(1), e0145299. Scholar
  31. Rubino, A., & Hainbucher, D. (2007). A large abrupt change in the abyssal water masses of the eastern Mediterranean. Geophysical Research Letters, 34, L23607. Scholar
  32. Schroeder, K., Josey, S. A., Herrmann, M., Grignon, L., Gasparini, G. P., & Bryden, H. L. (2010). Abrupt warming and salting of the Western Mediterranean Deep Water after 2005: Atmospheric forcings and lateral advection. Journal of Geophysical Research, 115, C08029. Scholar
  33. Schroeder, K., Ribotti, A., Borghini, M., Sorgente, R., Perilli, A., & Gasparini, G. P. (2008). An extensive Western Mediterranean Deep Water Renewal between 2004 and 2006. Geophysical Research Letters, 35, L18605. Scholar
  34. Stenni, B., Nichetto, P., Bregant, D., Scarazzato, P., & Longinelli, A. (1995). The δ18Ο signal of the northward flow of Mediterranean waters in the Adriatic Sea. Oceanologica Acta, 18(3), 319–328.Google Scholar
  35. Taricco C., Alessio S., Rubinetti S., Zanchettin D., Cosoli S., Gačić M., Mancuso S. and Rubino A. (2015). Marine Sediments remotely unveil long-term climatic variability over Northern Italy. Scientific Reports 5, Article number:12111.Google Scholar
  36. Theocharis, A., Klein, B., Nittis, K., & Roether, W. (2002). Evolution and status of the Eastern Mediterranean Transient (1997–1999). Journal of Marine Systems, 33–34, 91–116.CrossRefGoogle Scholar
  37. Vilibić, I., Matijević, J., Sepić, J., & Kuspilić, G. (2012). Changes in the Adriatic oceanographic properties induced by the Eastern Mediterranean Transient. Biogeosciences, 9, 2085–2097.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.DAIS - University Ca’Foscari of VeniceVeniceItaly
  2. 2.OGS - TriesteTriesteItaly
  3. 3.University of HamburgHamburgGermany
  4. 4.University “Parthenope” of NaplesNaplesItaly
  5. 5.CoNISMaRomeItaly

Personalised recommendations