Advertisement

Pure and Applied Geophysics

, Volume 175, Issue 4, pp 1325–1340 | Cite as

Tsunami Simulations in the Western Makran Using Hypothetical Heterogeneous Source Models from World’s Great Earthquakes

  • Amin Rashidi
  • Zaher Hossein Shomali
  • Nasser Keshavarz Farajkhah
Article

Abstract

The western segment of Makran subduction zone is characterized with almost no major seismicity and no large earthquake for several centuries. A possible episode for this behavior is that this segment is currently locked accumulating energy to generate possible great future earthquakes. Taking into account this assumption, a hypothetical rupture area is considered in the western Makran to set different tsunamigenic scenarios. Slip distribution models of four recent tsunamigenic earthquakes, i.e. 2015 Chile Mw 8.3, 2011 Tohoku-Oki Mw 9.0 (using two different scenarios) and 2006 Kuril Islands Mw 8.3, are scaled into the rupture area in the western Makran zone. The numerical modeling is performed to evaluate near-field and far-field tsunami hazards. Heterogeneity in slip distribution results in higher tsunami amplitudes. However, its effect reduces from local tsunamis to regional and distant tsunamis. Among all considered scenarios for the western Makran, only a similar tsunamigenic earthquake to the 2011 Tohoku-Oki event can re-produce a significant far-field tsunami and is considered as the worst case scenario. The potential of a tsunamigenic source is dominated by the degree of slip heterogeneity and the location of greatest slip on the rupture area. For the scenarios with similar slip patterns, the mean slip controls their relative power. Our conclusions also indicate that along the entire Makran coasts, the southeastern coast of Iran is the most vulnerable area subjected to tsunami hazard.

Keywords

Tsunami hazard western Makran subduction zone scaled slip distributions heterogeneity numerical modeling 

Notes

Acknowledgements

The authors would like to thank the developers of COMCOT program (Liu et al. 1998) for modeling tsunamis and also to thank the developers of GMT (Wessel and Smith 1991). They would also like to express their gratitude to the authors of the finite-fault models (Ji 2006; Hayes 2011; Wei et al. 2012; USGS 2015) used in this research for all their valuable efforts and making the models available. The authors would like to thank the editor, Alexander Rabinovich and two anonymous reviewers for their constructive comments and useful suggestions. The second author, ZHS, would like to acknowledge the financial support of University of Tehran for this research under Grant number 27875/01/10.

References

  1. Ambraseys, N. N., & Melville, C. P. (1982). A history of Persian earthquakes. Britain: Cambridge University Press.Google Scholar
  2. Ampuero, J.-P., Ripperger, J., & Mai, P. M. (2006). Properties of dynamic earthquake ruptures with heterogeneous stress drop. In R. Abercrombie, A. McGarr, H. Kanamori, & G. di Toro (Eds.), Radiated energy and the physics of earthquakes, geophysical monograph, 170 (pp. 255–261). Washington, DC: American Geophysical Union.Google Scholar
  3. Baba, T. (2003). Slip distributions of the 1944 Tonankai and 1946 Nankai earthquakes including the horizontal movement effect on tsunami generation. Frontier Research on Earth Evolution, 1, 213–218.Google Scholar
  4. Barkan, R., & ten Brink, U. (2010). Tsunami simulations of the 1867 Virgin Islands earthquake: Constraints on epicenter location and fault parameters. Bulletin of the Seismological Society of America, 100(3), 995–1009.CrossRefGoogle Scholar
  5. Byrne, D. E., Sykes, L. R., & Davis, D. M. (1992). Great thrust earthquakes and aseismic slip along the plate boundary of the Makran subduction zone. Journal of Geophysical Research, 97(B1), 449–478.CrossRefGoogle Scholar
  6. Geist, E. L. (2002). Complex earthquake rupture and local tsunamis. Journal of Geophysical Research.  https://doi.org/10.1029/2000JB000139.Google Scholar
  7. Geist, E. L., & Dmowska, R. (1999). Local tsunamis and distributed slip at the source. Pure and Applied Geophysics, 154, 485–512.CrossRefGoogle Scholar
  8. Grando, G., & McClay, K. (2007). Morphotectonics domains and structural styles in the Makran accretionary prism, offshore Iran. Sedimentary Geology, 196, 157–179.CrossRefGoogle Scholar
  9. Hanks, T. C., & Kanamori, H. (1979). A moment magnitude scale. Journal of Geophysical Research, 84(B5), 2348–2350.  https://doi.org/10.1029/JB084iB05p02348.CrossRefGoogle Scholar
  10. Hayes, G. P. (2011). Rapid source characterization of the 2011 M w 9.0 off the Pacific coast of Tohoku Earthquake. Earth Planets Space, 63, 529–534.CrossRefGoogle Scholar
  11. Heck, N. H. (1947). List of seismic sea waves. Bulletin of the Seismological Society of America, 37(4), 269–286.Google Scholar
  12. Heidarzadeh, M., & Kijko, A. (2011). A probabilistic tsunami hazard assessment for the Makran subduction zone at the northwestern Indian Ocean. Natural Hazards, 56(3), 577–593.CrossRefGoogle Scholar
  13. Heidarzadeh, M., Pirooz, M. D., & Zaker, N. H. (2009). Modeling the nearfield effects of the worst-case tsunami in the Makran subduction zone. Ocean Engineering, 36(5), 368–376.CrossRefGoogle Scholar
  14. Heidarzadeh, M., Pirooz, M. D., Zaker, N. H., Yalciner, A. C., Mokhtari, M., & Esmaeily, A. (2008). Historical tsunami in the Makran subduction zone off the southern coasts of Iran and Pakistan and results of numerical modeling. Ocean Engineering, 35(8&9), 774–786.CrossRefGoogle Scholar
  15. Heidarzadeh, M., & Satake, K. (2014). Possible sources of the tsunami observed in the northwestern Indian Ocean following the 2013 September 24 M w 7.7 Pakistan inland earthquake. Geophysical Journal International, 199(2), 752–766.CrossRefGoogle Scholar
  16. Heidarzadeh, M., & Satake, K. (2015). New insights into the source of the Makran tsunami of 27 November 1945 from tsunami waveforms a coastal deformation data. Pure and Applied Geophysics, 172, 621–640.CrossRefGoogle Scholar
  17. Hoechner, A., Babeyko, A. Y., & Zamora, N. (2016). Probabilistic tsunami hazard assessment for the Makran region with focus on maximum magnitude assumption. Natural Hazards and Earth System Sciences, 16, 1339–1350.CrossRefGoogle Scholar
  18. Hoffmann, G., Al-Yahyai, S., Naeem, G., Kociok, M., & Grützner, C. (2014). An Indian Ocean tsunami triggered remotely by an onshore earthquake in Balochistan, Pakistan. Geology, 42(10), 883–886.CrossRefGoogle Scholar
  19. Hoffmann, G., Rupprechter, M., Al Balushi, N., Grützner, C., & Reicherter, K. (2013). The impact of the 1945 Makran tsunami along the coastlines of the Arabian Sea (Northern Indian Ocean)—a review. Zeitschrift für Geomorphologie, 57, 257–277.CrossRefGoogle Scholar
  20. Ji, C. (2006). Rupture process of the 2006 Nov 15 magnitude 8.3—KURIL Island earthquake (revised). http://earthquake.usgs.gov/eqcenter/eqinthenews/2006/usvcam/finite_fault.php.
  21. Kopp, C., Fruehn, J., Flueh, E. R., Reichert, C., Kukowski, N., Bialas, J., et al. (2000). Structure of the Makran subduction zone from wide-angle and reflection seismic data. Tectonophysics, 329, 171–191.CrossRefGoogle Scholar
  22. Kukowski, N., Schillhorn, T., Huhn, K., von Rad, U., Husen, S., & Flueh, E. R. (2001). Morphotectonics and mechanics of the central Makran accretionary wedge off Pakistan. Marine Geology, 173, 1–19.CrossRefGoogle Scholar
  23. Liu, P. L.-F., Cho, Y. S., Briggs, M. J., Kanoglu, U., & Synolakis, C. E. (1995). Runup of solitary waves on a circular island. Journal of Fluid Mechanics, 302, 259–285.CrossRefGoogle Scholar
  24. Liu, P. L.-F., Cho, Y. S., Yoon, S. B., & Seo, S. N. (1994). Numerical simulations of the 1960 Chilean tsunami propagation and inundation at Hilo, Hawaii. In M. I. El-Sabh (Ed.), Recent Development in Tsunami Research (pp. 99–115). Dordrecht: Kluwer Academic.Google Scholar
  25. Liu, P. L. -F., Woo, S. B., & Cho, Y. S. (1998). Computer programs for tsunami propagation and inundation. Technical report, Cornell University.Google Scholar
  26. Mansinha, L., & Smylie, D. E. (1971). The displacement fields of inclined faults. Bulletin of the Seismological Society of America, 61, 1433–1440.Google Scholar
  27. Minshull, T. A., White, R. S., Barton, P. J., & Collier, J. S. (1992). Deformation at plate boundaries around the Gulf of Oman. Marine Geology, 104, 265–277.CrossRefGoogle Scholar
  28. Musson, R. M. W. (2009). Subduction in the western Makran: The historian’s contribution. Journal of the Geological Society, 166, 387–391.CrossRefGoogle Scholar
  29. Neetu, S., Suresh, I., Shankar, R., Nagarajan, B., Sharma, R., Shenoi, S. S. C., et al. (2011). Trapped waves of the 27 November 1945 Makran tsunami: Observations and numerical modeling. Natural Hazards, 59, 1609–1618.CrossRefGoogle Scholar
  30. Okal, E. A., & Synolakis, C. E. (2008). Far-field tsunami hazard from mega-thrust earthquakes in the Indian Ocean. Geophysical Journal International, 172, 995–1015.CrossRefGoogle Scholar
  31. Omira, R., Baptista, M. A., & Lisboa, F. (2016). Tsunami characteristics along the Peru-Chile Trench: analysis of the 2015 M w 8.3 Illapel, the 2014 M w 8.2 Iquique and the 2010 M w 8.8 Maule tsunamis in the near-field. Pure and Applied Geophysics, 173, 1063–1077.CrossRefGoogle Scholar
  32. Payande, A. R., Niksokhan, M. H., & Naserian, H. (2015). Tsunami hazard assessment of Chabahar bay related to megathrust seismogenic potential of the Makran subduction zone. Natural Hazards, 76, 161–176.CrossRefGoogle Scholar
  33. Rabinovich, A. B., Lobkovsky, L. I., Fine, I. V., Thomson, R. E., Ivelskaya, T. N., & Kulikov, E. A. (2008). Near-source observations and modeling of the Kuril Islands tsunamis of 15 November 2006 and 13 January 2007. Advances in Geosciences, 14(1), 105–116.CrossRefGoogle Scholar
  34. Rajendran, C. P., Rajendran, K., Shah-hosseini, M., Beni, A. N., Nautiyal, C. M., & Andrews, R. (2013). The hazard potential of the western segment of the Makran subduction zone, northern Arabian Sea. Natural Hazards, 65(1), 219–239.CrossRefGoogle Scholar
  35. Ruiz, J. A., Fuentes, M., Riquelme, S., Campos, J., & Cisternas, A. (2015). Numerical simulation of tsunami runup in northern Chile based on non-uniform k − 2 slip distributions. Natural Hazards, 79(2), 1177–1198.CrossRefGoogle Scholar
  36. Satake, K., & Heidarzadeh, M. (2017). A review of source models of the 2015 Illapel, Chile earthquake and insights from tsunami data. Pure and Applied Geophysics, 174, 1–9.CrossRefGoogle Scholar
  37. Smith, G. L., McNeill, L. C., Wang, K., He, J., & Henstock, T. J. (2013). Thermal structure and megathrust seismogenic potential of the Makran subduction zone. Geophysical Research Letters, 40(8), 1528–1533.CrossRefGoogle Scholar
  38. USGS. (2015). Preliminary Finite Fault Results for the Sep 16, 2015 M w 8.3 46 km W of Illapel, Chile Earthquake (Version 1). http://earthquake.usgs.gov/earthquakes/eventpage/us20003k7a#finite-fault.
  39. Vernant, Ph., Nilforoushan, F., Hatzfeld, D., Abbassi, M. R., Vigny, C., Masson, F., et al. (2004). Present-day crustal deformation and plate kinematics in the Middle East constrained by GPS measurements in Iran and northern Oman. Geophysical Journal International, 157, 381–398.CrossRefGoogle Scholar
  40. Wang, X. (2009). User manual for COMCOT version 1.7, first draft. Cornell University.Google Scholar
  41. Wang, X., & Liu, P. L.-F. (2005). A numerical investigation of Boumerdes-Zemmouri (Algeria) earthquake and tsunami. Computer Modeling in Engineering Science, 10(2), 171–184.Google Scholar
  42. Wang, X., & Liu, P. L.-F. (2006). Analysis of 2004 Sumatra earthquake fault plane mechanisms and Indian Ocean tsunami. Journal of Hydraulic Research, 44(2), 147–154.CrossRefGoogle Scholar
  43. Wei, S., Graves, R., Helmberger, D., Avouac, J. P., & Jiang, J. (2012). Sources of shaking and flooding during the Tohoku-Oki earthquake: A mixture of rupture styles. Earth and Planetary Science Letters, 333–334, 91–100.CrossRefGoogle Scholar
  44. Wessel, P., & Smith, W. H. F. (1991). Free software helps map and display data. Eos, Transactions American Geophysical Union, 72(41), 441–446.CrossRefGoogle Scholar
  45. White, R. S., & Klitgord, K. (1976). Sediment deformation and plate tectonics in the Gulf of Oman. Earth and Planetary Science Letters, 32(2), 199–209.CrossRefGoogle Scholar
  46. Ye, L., Lay, T., Kanamori, H., & Koper, K. D. (2016). Rapidly estimated seismic source parameters for the 16 September 2015 Illapel, Chile M w 8.3 earthquake. Pure and Applied Geophysics, 173, 321–332.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of GeophysicsUniversity of TehranTehranIran
  2. 2.Department of Earth SciencesUppsala UniversityUppsalaSweden
  3. 3.Research Institute of Petroleum Industry (RIPI)TehranIran

Personalised recommendations