Advertisement

Pure and Applied Geophysics

, Volume 175, Issue 8, pp 2643–2667 | Cite as

Fault Zone Imaging from Correlations of Aftershock Waveforms

  • Gregor Hillers
  • Michel Campillo
Article

Abstract

We image an active fault zone environment using cross correlations of 154 15 s long 1992 Landers earthquake aftershock seismograms recorded along a line array. A group velocity and phase velocity dispersion analysis of the reconstructed Rayleigh waves and Love waves yields shear wave velocity images of the top 100 m along the 800 m long array that consists of 22 three component stations. Estimates of the position, width, and seismic velocity of a low-velocity zone are in good agreement with the findings of previous fault zone trapped waves studies. Our preferred solution indicates the zone is offset from the surface break to the east, 100–200 m wide, and characterized by a 30% velocity reduction. Imaging in the 2–6 Hz range resolves further a high-velocity body of similar width to the west of the fault break. Symmetry and shape of zero-lag correlation fields or focal spots indicate a frequency and position dependent wavefield composition. At frequencies greater than 4 Hz surface wave propagation dominates, whereas at lower frequencies the correlation field also exhibits signatures of body waves that likely interact with the high-velocity zone. The polarization and late arrival times of coherent wavefronts observed above the low-velocity zone indicate reflections associated with velocity contrasts in the fault zone environment. Our study highlights the utility of the high-frequency correlation wavefield obtained from records of local and regional seismicity. The approach does not depend on knowledge of earthquake source parameters, which suggests the method can return images quickly during aftershock campaigns to guide network updates for optimal coverage of interesting geological features.

Keywords

Fault zones Imaging Surface waves Cross-correlation Aftershocks 

Notes

Acknowledgements

We thank Z. Peng for help with the database and M. Wathelet, A. Mordret, and D. Faulkner for discussions. We thank the Editor B. Edwards, reviewer P.-E. Share, and an anonymous reviewer for comments that helped to improve the manuscript. G. Hillers acknowledges support through a Heisenberg fellowship from the German Research Foundation (HI 1714/1-2). M. Campillo acknowledges support from Institut Universitaire de France. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant Agreement No. 742335, F-IMAGE). Most figures are made using the Generic Mapping Tools (Wessel and Smith 1998).

References

  1. Aki, K. (1957). Space and time spectra of stationary stochastic waves, with special reference to microtremors. Bulletin of the Earthquake Research Institute, The University of Tokyo, 35, 415–457.Google Scholar
  2. Allam, A. A., & Ben-Zion, Y. (2012). Seismic velocity structures in the Southern California plate-boundary environment from double-difference tomography. Geophysical Journal International, 190, 1181–1196.  https://doi.org/10.1111/j.1365-246X.2012.05544.x.CrossRefGoogle Scholar
  3. Allam, A. A., Ben-Zion, Y., & Peng, Z. (2014). Seismic imaging of a bimaterial interface along the Hayward Fault, CA, with fault zone head waves and direct P arrivals. Pure and Applied Geophysics, 171, 2993–3011.  https://doi.org/10.1007/s00024-014-0784-0.CrossRefGoogle Scholar
  4. Allmann, B. P., & Shearer, P. M. (2007). Spatial and temporal stress drop variations in small earthquakes near Parkfield, California. Journal of Geophysical Research, 112, B04305.  https://doi.org/10.1029/2006JB004395.CrossRefGoogle Scholar
  5. Andrews, D. J., & Ben-Zion, Y. (1997). Wrinkle-like slip pulse on a fault between different materials. Journal of Geophysical Research, 102(B1), 553–571.CrossRefGoogle Scholar
  6. Asten, M. W. (2006). On bias and noise in passive seismic data from finite circular array data processed using SPAC methods. Geophysics, 71(6), V153–V162.  https://doi.org/10.1190/1.2345054.CrossRefGoogle Scholar
  7. Ben-Zion, Y. (1998). Properties of seismic fault zone waves and their utility for imaging low-velocity structure. Journal of Geophysical Research, 103(B6), 12,567–12,585.CrossRefGoogle Scholar
  8. Ben-Zion, Y., & Aki, K. (1990). Seismic radiation from an SH line source in a laterally heterogeneous planar fault zone. Bulletin of the Seismological Society of America, 80(4), 971–994.Google Scholar
  9. Ben-Zion, Y., Katz, S., & Leary, P. (1992). Joint inversion of fault zone head waves and direct P arrivals for crustal structure near major faults. Journal of Geophysical Research, 97, 1943–1951.CrossRefGoogle Scholar
  10. Ben-Zion, Y., Vernon, F. L., Ozakin, Y., Zigone, D., Ross, Z. E., Meng, H., et al. (2015). Basic data features and results from a spatially-dense seismic array on the San Jacinto fault zone. Geophysical Journal International, 202, 370–380.  https://doi.org/10.1093/gji/ggv14.CrossRefGoogle Scholar
  11. Benech, N., Catheline, S., Brum, J., Gallot, T., & Negreira, C. A. (2009). 1-D elasticity assessment in soft solids from shear wave correlation: The time-reversal approach. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 56(11), 2400–2410.CrossRefGoogle Scholar
  12. Bodin, T., Sambridge, M., Tkalcic, H., Arroucau, P., Gallagher, K., & Rawlinson, N. (2012). Transdimensional inversion of receiver functions and surface wave dispersion. Journal of Geophysical Research, 117, B02301.  https://doi.org/10.1029/2011JB008560.CrossRefGoogle Scholar
  13. Campillo, M., & Paul, A. (2003). Long-range correlations in the diffuse seismic coda. Science.  https://doi.org/10.1126/science.1078551.
  14. Campillo, M., & Roux, P. (2015). Crust and lithospheric structure-seismic imaging and monitoring with ambient noise correlations. In G. Schubert (Ed.), Treatise on geophysics (Vol. 1, pp. 391–417). Oxford: Elsevier.CrossRefGoogle Scholar
  15. Campillo, M., Singh, S. K., Shapiro, N., Pacheco, J., & Herrmann, R. B. (1996). Crustal structure south of the Mexican volcanic belt, based on group velocity dispersion. Geofísica Internacional, 35, 361–370.Google Scholar
  16. Catheline, S., Benech, N., Brum, J., & Negreira, C. (2008). Time reversal of elastic waves in soft solids. Physical Review Letters, 100(6), 064301.  https://doi.org/10.1103/PhysRevLett.100.064301.
  17. Chaput, J., Campillo, M., Aster, R. C., Roux, P., Kyle, P. R., Knox, H., et al. (2015). Multiple scattering from icequakes at Erebus volcano, Antarctica; Implications for imaging at glaciated volcanoes. Journal of Geophysical Research, 120, 1129–1141.  https://doi.org/10.1002/2014JB011278.Google Scholar
  18. Chaput, J., Clerc, V., Campillo, M., Roux, P., & Knox, H. (2016). On the practical convergence of coda-based correlations: A window optimization approach. Geophysical Journal International, 204(2), 736–747.  https://doi.org/10.1093/gji/ggv476.CrossRefGoogle Scholar
  19. Cupillard, P., & Capdeville, Y. (2010). On the amplitude of surface waves obtained by noise correlation and the capability to recover the attenuation: A numerical approach. Geophysical Journal International, 181, 1687–1700.  https://doi.org/10.1111/j.1365-246X.2010.04568.x.Google Scholar
  20. Draganov, D., Wapenaar, K., Mulder, W., Singer, J., & Verdel, A. (2007). Retrieval of reflections from seismic background-noise measurements. Geophysical Research Letters, 34, L04305.  https://doi.org/10.1029/2006GL028735.CrossRefGoogle Scholar
  21. Fang, H., Zhang, H., Yao, H., Allam, A., Zigone, D., & Ben-Zion, Y., et al. (2016). A new algorithm for three-dimensional joint inversion of body wave and surface wave data and its application to the Southern California plate boundary region. Journal of Geophysical Research: Solid Earth.  https://doi.org/10.1002/2015JB012702.
  22. Fink, M., Prada, C., Wu, F., & Cassereau, D. (1989). Self-focusing in inhomogeneous media with time-reversal acoustic mirrors. Proceedings IEEE Ultrasonics Symposium, 2, 681–686.CrossRefGoogle Scholar
  23. Gabriel, A. A., Ampuero, J. P., Dalguer, L. A., & Mai, P. M. (2013). Source properties of dynamic rupture pulses with off-fault plasticity. Journal of Geophysical Research, 118, 4117–4126.  https://doi.org/10.1002/jgrb.50213.Google Scholar
  24. Gallot, T., Catheline, S., Roux, P., Brum, J., Benech, N., & Negreira, C. (2011). Passive elastography: Shear-wave tomography from physiological-noise correlation in soft tissues. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 58(6), 1122–1126.CrossRefGoogle Scholar
  25. Gouédard, P., Roux, P., Campillo, M., & Verdel, A. (2008). Convergence of the two-point correlation function toward the Green’s function in the context of a seismic-prospecting data set. Geophysics, 73(6), 47–53.  https://doi.org/10.1190/1.2985822.CrossRefGoogle Scholar
  26. Haberland, C., Agnon, A., El-Kelani, R., Maercklin, N., Qabbani, I., & Rümpker, R., et al. (2003). Modeling of seismic guided waves at the Dead Sea Transform. Journal of Geophysical Research.  https://doi.org/10.1029/2002JB002309.
  27. Haney, M. M., Mikesell, T. D., van Wijk, K., & Nakahara, H. (2012). Extension of the spatial autocorrelation (SPAC) method to mixed-component correlations of surface waves. Geophysical Journal International, 192, 189–206.  https://doi.org/10.1111/j.1365-246X.2012.05597.x.CrossRefGoogle Scholar
  28. Hansen, P. C. (1992). Analysis of discrete ill-posed problems by means of the L-curve. SIAM Review, 34(4), 561–580.CrossRefGoogle Scholar
  29. Hauksson, E., Jones, L. M., Hutton, K., & Eberhart-Phillips, D. (1993). The 1992 Landers earthquake sequence: Seismological observations. Journal of Geophysical Research, 98(B11), 19,835–19,858Google Scholar
  30. Herrmann, R. B. (2006). Computer programs in seismology, vers. 3.30; An overview of synthetic seismogram computation. Tech. rep., Saint Louis University. http://www.eas.slu.edu/People/RBHerrmann/ComputerPrograms.html
  31. Hillers, G., & Campillo, M. (2016). Fault zone reverberations from cross-correlations of earthquake waveforms and seismic noise. Geophysical Journal International, 204(3), 1503–1517.  https://doi.org/10.1093/gji/ggv515.CrossRefGoogle Scholar
  32. Hillers, G., Campillo, M., Ben-Zion, Y., & Roux, P. (2014). Seismic fault zone trapped noise. Journal of Geophysical Research, 119(7), 5786–5799.  https://doi.org/10.1002/2014JB011217.Google Scholar
  33. Hillers, G., Roux, P., Campillo, M., & Ben-Zion, Y. (2016). Focal spot imaging based on zero lag cross correlation amplitude fields: Application to dense array data at the San Jacinto fault zone. Journal of Geophysical Research: Solid Earth.  https://doi.org/10.1002/2016JB013014.
  34. Hong, T. K., & Menke, W. (2006). Tomographic investigation of the wear along the San Jacinto fault, Southern California. Physics of the Earth and Planetary Interiors, 155, 236–248.CrossRefGoogle Scholar
  35. Igel, H., Ben-Zion, Y., & Leary, P. C. (1997). Simulation of SH- and P-SV-wave propagation in fault zones. Geophysical Journal International, 128, 533–546.CrossRefGoogle Scholar
  36. Jones, C., Nippress, S., Rietbrock, A., Faulkner, D. R., Rutter, E. H., Haberland, C. A., & Teixido, T. (2010). The shallow velocity structure of the Carboneras fault zone from high-resolution seismic investigations. AGU Fall Meeting Abstracts. Abstract T41B-2111Google Scholar
  37. Kurzon, I., Vernon, F. L., Ben-Zion, Y., & Atkinson, G. (2014). Ground motion prediction equations in the San Jacinto fault zone—significant effects of rupture directivity and fault zone amplification. Pure and Applied Geophysics.  https://doi.org/10.1007/s00024-014-0855-2.
  38. Larose, E., Roux, P., & Campillo, M. (2007). Reconstruction of Rayleigh-Lamb dispersion spectrum based on noise obtained from an air-jet forcing. Journal of the Acoustical Society of America, 122(6), 3437–3444.  https://doi.org/10.1121/1.2799913.CrossRefGoogle Scholar
  39. Li, H., Zhu, L., & Yang, H. (2007). High-resolution structures of the Landers fault zone inferred from aftershock waveform data. Geophysical Journal International, 171, 1295–1307.  https://doi.org/10.1111/j.1365-246X.2007.03608.x.CrossRefGoogle Scholar
  40. Li, Y. G., Leary, P., Aki, K., & Malin, P. (1990). Seismic trapped modes in the Oroville and San Andreas fault zones. Science, 249(4970), 763–766.  https://doi.org/10.1126/science.249.4970.763.CrossRefGoogle Scholar
  41. Li, Y. G., Aki, K., Adams, D., Hasemi, A., & Lee, W. H. K. (1994a) Seismic guided waves trapped in the fault zone of the Landers, California, earthquake of 1992. Journal of Geophysical Research, 99(B6):11,705–11,722Google Scholar
  42. Li, Y. G., Vidale, J., Aki, K., Marone, C. J., & Lee, W. H. K. (1994b). Fine structure of the Landers fault zone: Segmentation and the rupture process. Science, 265, 367–370.CrossRefGoogle Scholar
  43. Lin, F. C., & Ritzwoller, M. H. (2011). Helmholtz surface wave tomography for isotropic and azimuthally anisotropic structure. Geophysical Journal International, 186, 1104–1120.  https://doi.org/10.1111/j.1365-246X.2011.05070.x.CrossRefGoogle Scholar
  44. Lin, F. C., Ritzwoller, M. H., & Snieder, R. (2009). Eikonal tomography: Surface wave tomography by phase front tracking across a regional broad-band seismic array. Geophysical Journal International, 177, 1091–1110.  https://doi.org/10.1111/j.1365-246X.2009.04105.x.CrossRefGoogle Scholar
  45. Lin, F. C., Li, D., Clayton, R. W., & Hollis, D. (2013). High-resolution 3D shallow crustal structure in Long Beach, California: Application of ambient noise tomography on a dense seismic array. Geophysics, 78(4), Q45–Q56.  https://doi.org/10.1190/GEO2012-0453.1.CrossRefGoogle Scholar
  46. Liu, X., Ben-Zion, Y., & Zigone, D. (2015). Extracting seismic attenuation coefficients from cross-correlations of ambient noise at linear triplets of stations. Geophysical Journal International, 203, 1149–1163.  https://doi.org/10.1093/gji/ggv357.CrossRefGoogle Scholar
  47. Ma, S., & Andrews, D. J. (2010). Inelastic off-fault response and three-dimensional dynamics of earthquake rupture on a strike-slip fault. Journal of Geophysical Research, 115, B04304.  https://doi.org/10.1029/2009JB006382.Google Scholar
  48. McGuire, J., & Ben-Zion, Y. (2005). High-resolution imaging of the Bear Valley section of the San Andreas Fault at seismogenic depths with fault-zone head waves and relocated seismicity. Geophysical Journal International, 163, 152–164.  https://doi.org/10.1111/j.1365-246X.2005.02703.x.CrossRefGoogle Scholar
  49. Mordret, A., Shapiro, N. M., Singh, S. S., Roux, P., & Barkved, O. I. (2013). Helmholtz tomography of ambient noise surface wave data to estimate Scholte wave phase velocity at Valhall Life of the Field. Geophysics, 78(2), WA99–WA109.  https://doi.org/10.1190/GEO2012-0303.1.
  50. Nakata, N., Chang, J. P., Lawrence, J. F., & Boué, P. (2015). Body wave extraction and tomography at Long Beach, California, with ambient-noise interferometry. Journal of Geophysical Research, 120, 1159–1173.  https://doi.org/10.1002/2015JB011870.Google Scholar
  51. Ozakin, Y., Ben-Zion, Y., Aktar, M., Karabulut, H., & Peng, Z. (2012). Velocity contrast across the 1944 rupture zone of the North Anatolian fault east of Ismetpasa from analysis of teleseismic arrivals. Geophysical Research Letters, 39, L08307.  https://doi.org/10.1029/2012GL051426.CrossRefGoogle Scholar
  52. Paul, A., Campillo, M., Margerin, L., Larose, E., & Derode, A. (2005). Empirical synthesis of time-asymmetrical Green function from the correlation of coda waves. Journal of Geophysical Research, 110, B08302.  https://doi.org/10.1029/2004JB003521.CrossRefGoogle Scholar
  53. Peng, Z., Ben-Zion, Y., Michael, A. J., & Zhu, L. (2003). Quantitative analysis of seismic fault zone waves in the rupture zone of the 1992 Landers, California, earthquake: Evidence for a shallow trapping structure. Geophysical Journal International, 155, 1021–1041.CrossRefGoogle Scholar
  54. Prieto, G. A., Denolle, M., Lawrence, J. F., & Beroza, G. C. (2011). On amplitude information carried by the ambient seismic field. Comptes Rendus Geoscience, 343, 600–614.  https://doi.org/10.1016/j.crte.2011.03.001.CrossRefGoogle Scholar
  55. Rempe, M., Mitchell, T., Renner, J., Nippress, S., Ben-Zion, Y., & Rockwell, T. (2013). Damage and seismic velocity structure of pulverized rocks near the San Andreas Fault. Journal of Geophysical Research, 118, 2813–2831.  https://doi.org/10.1002/jgrb.50184.Google Scholar
  56. Roten, D., Olsen, K. B., Day, S. M., Cui, Y., & Fäh, D. (2014). Expected seismic shaking in Los Angeles reduced by San Andreas fault zone plasticity. Geophysical Research Letters, 41, 2769–2777.  https://doi.org/10.1002/2014GL059411.CrossRefGoogle Scholar
  57. Roux, P. (2009). Passive seismic imaging with direct ambient noise: Application to surface waves and the San Andreas Fault in Parkfield, CA. Geophysical Journal International, 179, 367–373.  https://doi.org/10.1111/j.1365-246X.2009.04282.x.CrossRefGoogle Scholar
  58. Roux, P., & Ben-Zion, Y. (2014). Monitoring fault zone environments with correlations of earthquake waveforms. Geophysical Journal International, 196, 1073–1081.  https://doi.org/10.1093/gji/ggt441.CrossRefGoogle Scholar
  59. Roux, P., Moreau, L., Lecointre, A., Hillers, G., Campillo, M., Ben-Zion, Y., et al. (2016). A methodological approach towards high-resolution seismic imaging of the San Jacinto Fault Zone using ambient-noise recordings at a spatially dense array. Geophysical Journal International, 206, 980–992.  https://doi.org/10.1093/gji/ggw193.CrossRefGoogle Scholar
  60. Sambridge, M. (1999). Geophysical inversion with a neighbourhood algorithm-I. Searching a parameter space. Geophysical Journal International, 138, 479–494.CrossRefGoogle Scholar
  61. Seydoux, L., Shapiro, N., de Rosny, J., & Landès, M. (2015). A spatial coherence analysis of seismic wavefields based on array covariance matrix: Application to one year of USArray data. Eos Trans AGU Fall Meet. Suppl., Abstract S34B-04Google Scholar
  62. Tape, C., Liu, Q., Maggi, A., & Tromp, J. (2009). Adjoint tomography of the Southern California crust. Science, 325, 988–992.  https://doi.org/10.1126/science.1175298.CrossRefGoogle Scholar
  63. Tarantola, A., & Valette, B. (1982). Generalized nonlinear inverse problems solved using the least squares criterion. Reviews of Geophysics, 20(2), 219–232.CrossRefGoogle Scholar
  64. Thurber, C., Zhang, H., Waldhauser, F., Hardebeck, J., Michael, A., & Eberhart-Phillips, D. (2006). Three-dimensional compressional wavespeed model, earthquake relocations, and focal mechanisms for the Parkfield, California. Region Bulletin of the Seismological Society of America, 96(4B), S38–S49.CrossRefGoogle Scholar
  65. Wald, D. J., & Heaton, T. H. (1994). Spatial and temporal distribution of slip for the 1992 Landers, California, earthquake. Bulletin of the Seismological Society of America, 84(3), 668–691.Google Scholar
  66. Wathelet, M. (2008). An improved neighborhood algorithm: Parameter conditions and dynamic scaling. Geophysical Research Letters, 35, L09301.  https://doi.org/10.1029/2008GL033256.CrossRefGoogle Scholar
  67. Wathelet, M., Jongmans, D., & Ohrnberger, M. (2004). Surface-wave inversion using a direct search algorithm and its application to ambient vibration measurements. Near Surface Geophysics, 2, 211–221.CrossRefGoogle Scholar
  68. Weaver, R. L. (2013). On the retrieval of attenuation and site amplification from ambient noise on linear arrays: Further numerical simulations. Geophysical Journal International, 193, 1644–1657.  https://doi.org/10.1093/gji/ggt063.CrossRefGoogle Scholar
  69. Wessel, P., & Smith, W. H. F. (1998). New, improved version of generic mapping tools released. Eos Trans AGU.  https://doi.org/10.1029/98EO00426.
  70. Yang, H., & Zhu, L. (2010). Shallow low-velocity zone of the San Jacinto fault from local earthquake waveform modeling. Geophysical Journal International, 183, 421–432.  https://doi.org/10.1111/j.1365-246X.2010.04744.x.CrossRefGoogle Scholar
  71. Yang, H., Zhu, L., & Cochran, E. S. (2011). Seismic structures of the Calico fault zone inferred from local earthquake travel time modelling. Geophysical Journal International, 186, 760–770.  https://doi.org/10.1111/j.1365-246X.2011.05055.x.CrossRefGoogle Scholar
  72. Yang, H., Li, Z., Peng, Z., Ben-Zion, Y., & Vernon, F. (2014). Low-velocity zones along the San Jacinto fault, Southern California, from body waves recorded in dense linear arrays. Journal of Geophysical Research: Solid Earth, 119, 8976–8990.  https://doi.org/10.1002/2014JB011548.Google Scholar
  73. Zigone, D., Ben-Zion, Y., Campillo, M., & Roux, P. (2015). Seismic tomography of the Southern California plate boundary region from noise-based Rayleigh and Love Waves. Pure and Applied Geophysics, 172, 1007–1032.  https://doi.org/10.1007/s00024-014-0872-1.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut des Sciences de la TerreUniversité Grenoble AlpesGrenobleFrance
  2. 2.Institute of SeismologyUniversity of HelsinkiHelsinkiFinland
  3. 3.CNRSParisFrance

Personalised recommendations