Applications of Geostationary Satellite Data to Aviation

Abstract

Weather is by far the most important factor in air traffic delays in the United States’ National Airspace System (NAS) according to the Federal Aviation Administration (FAA). Geostationary satellites have been an effective tool for the monitoring of meteorological conditions that affect aviation operations since the launch of the first Synchronous Meteorological Satellite (SMS) in the United States in 1974. This paper will review the global use of geostationary satellites in support of aviation weather since their inception, with an emphasis on the latest generation of satellites, such as Geostationary Operational Environmental Satellite (GOES)-R (16) with its Advanced Baseline Imager (ABI) and Geostationary Lightning Mapper (GLM). Specific applications discussed in this paper include monitoring of convective storms and their associated hazards, fog and low stratus, turbulence, volcanic hazards, and aircraft icing.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

(Source: Lindstrom 2017)

Fig. 3

(Source: Bachmeier 2017a)

Fig. 4

(from Pryor 2017)

Fig. 5
Fig. 6

(Source: University of Wisconsin-CIMSS 2017)

Fig. 7

(UW-CIMSS Satellite Blog)

Fig. 8
Fig. 9

(Ellrod 2005)

Fig. 10

(Bachmeier 2017b)

Fig. 11

(From Ellrod and Schreiner 2004)

Fig. 12

(From Smith et al. 2012)

References

  1. Ackerman, S., Schreiner, A., Schmit, T., Woolf, H., Li, J., & Pavolonis, M. (2008). Using the GOES Sounder to monitor upper level SO2 from volcanic eruptions. Journal of Geophysical Research: Atmospheres, 113. https://doi.org/10.1029/2007jd009622.

  2. Adler, R. F., & Fenn, D. D. (1979). Thunderstorm intensity as determined from satellite data. Journal of Applied Meteorology, 18, 502–517.

    Article  Google Scholar 

  3. Atkins, N. T., & Wakimoto, R. M. (1991). Wet microburst activity over the southeastern United States: Implications for forecasting. Weather and Forecasting, 6, 470–482.

    Article  Google Scholar 

  4. Bachmeier, S. (2017a). Tornadoes and Large Hail in Minnesota and Wisconsin. CIMSS Satellite Blog, Cooperative Institute for Meteorological Satellite Studies, 16 May 2017. http://cimss.ssec.wisc.edu/goes/blog/archives/category/severe-convection/page/6.

  5. Bachmeier, S. (2017b). Eruption of Kambalny Volcano in Kamchatka, Russia. CIMSS Satellite Blog, Cooperative Institute for Meteorological Satellite Studies, 25 March 2017. http://cimss.ssec.wisc.edu/goes/blog/archives/category/volcanic-activity/page/2.

  6. Bass, R. (2017). The FAA’s convective weather research program. In AMS 18th Conf. on Aviation, Range and Aerospace Meteorology (ARAM), 23 January 2017, Seattle, Washington. https://ams.confex.com/ams/97Annual/webprogram/Paper313429.html.

  7. Bedka, K., Brunner, J., Dworak, R., Feltz, W., Otkin, J., & Greenwals, T. (2010). Objective satellite-based detection of overshooting tops using infrared window channel brightness temperature gradients. Journal of Applied Meteorology and Climatology, 49, 181–202.

    Article  Google Scholar 

  8. Bessho, K., et al. (2016). An introduction to Himiwari-8/9—Japan’s new-generation geostationary meteorological satellites. Journal of the Meteorological Society of Japan, 94, 151–183.

    Article  Google Scholar 

  9. Bézy, J.-L., Aminou, D., Bensi, P., Stuhlman, R., Tjemkes, S., & Rodriguez, A. (2005). Meteosat Third Generation. European Space Agency Bulletin, 123, 28–32.

    Google Scholar 

  10. Byers, H. R., & Braham, R. R. (1949). The thunderstorm (p. 247). Washington, DC: U. S. Government Printing Office.

    Google Scholar 

  11. Calvert, C., & Pavolonis, M. (2011). GOES-R Advanced Baseline Imager (ABI) Theoretical Basis Document for Low Cloud and Fog, Version 2.0. NOAA/NESDIS Center for Satellite Applications and Research, p. 72.

  12. Caracena, F., & Flueck, J. A. (1988). Classifying and forecasting microburst activity in the Denver area. Journal of Aircraft, 25, 525–530.

    Article  Google Scholar 

  13. Casadevall, T. (1994). The 1989–1990 eruption of Redoubt Volcano, Alaska: Impacts on aircraft operations. Journal of Volcanology and Geothermal Research, 62, 301–316.

    Article  Google Scholar 

  14. Chai, T., Crawford, A., Stunder, B., Pavolonis, M., Draxler, R., & Stein, A. (2017). Improving volcanic ash predictions with the HYSPLIT dispersions model by assimilating MODIS satellite retrievals. Atmospheric Chemistry and Physics, 17, 2865–2879.

    Article  Google Scholar 

  15. Clarisse, L., Prata, F., Lacour, J.-L., Hurtmans, D., Clerbaux, C., & Coheur, P.-F. (2010). A correlation method for volcanic ash detection using hyperspectral infrared measurements. Geophysical Research Letters, 37, L198065. (p. 5).

    Article  Google Scholar 

  16. Conover, J. H. (1964). The identification and significance of orographically induced clouds observed by TIROS satellites. Journal of Applied Meteorology, 3, 226–234.

    Article  Google Scholar 

  17. DeMaria, M., DeMaria, R. T., Knaff, J., & Molenar, D. (2012). Tropical cyclone lightning and rapid intensity change. Monthly Weather Review, 140, 1828–1842.

    Article  Google Scholar 

  18. Donovan, M., Williams, E., Kessinger, C., Blackburn, G., Herzegh, P., Bankert, R., et al. (2008). The identification and verification of hazardous convective cells over oceans using visible and infrared satellite observations. Journal of Applied Meteorology and Climatology, 47, 164–184.

    Article  Google Scholar 

  19. Dworak, R., Bedka, K., Brunner, J., & Feltz, W. (2012). Comparison between GOES-12 overshooting-top detections, WSR-88D radar reflectivity and severe storm reports. Weather and Forecasting, 27, 684–699.

    Article  Google Scholar 

  20. Eckert, M. (2017). GOES-16 enhancements to IDSS for San Francisco International Airport (SFO) on 03/03/17. NWA Specialized Operations CommitteeIDSS Success Stories. http://nwas.org/wp-content/uploads/2016/08/DSS-Success-Story-SFO_GOES-16-1.pdf.

  21. Ellrod, G. P. (1985). Indicators of high altitude, non-convective turbulence observed in satellite images. In Proc. of the 2nd Intl. Conf. on the Aviation Weather System (pp. 277–284). Boston, MA: Amer. Meteor. Soc.

  22. Ellrod, G. P. (1987). Identifying high altitude mountain wave turbulence and strong chinook wind events with satellite imagery. In Proc. Of the AIAA 25th Aerospace Sciences Meeting, Jan. 12–15, Reno (p. 7). Washington, DC: Amer. Inst. For Aeronautics and Astronautics.

  23. Ellrod, G. P. (1989). Environmental conditions associated with the Dallas microburst storm determined from satellite soundings. Weather and Forecasting, 4, 469–484.

    Article  Google Scholar 

  24. Ellrod, G. P. (1990). A water vapor feature related to severe thunderstorms. National Weather Digest, 15, 19–29.

    Google Scholar 

  25. Ellrod, G. P. (1995). Advances in the detection of fog at night using GOES multispectral infrared imagery. Weather and Forecasting, 10, 606–619.

    Article  Google Scholar 

  26. Ellrod, G. P. (1996). The use of GOES-8 multi-spectral imagery for the detection of aircraft icing regions. In 8th Conf. on Satellite Meteorology and Oceanography, Atlanta, GA, Amer. Meteor. Soc., (pp. 168–171).

  27. Ellrod, G. P. (2002). Estimation of low cloud base heights at night from satellite infrared and surface temperature data. National Weather Digest, 26, 39–44.

    Google Scholar 

  28. Ellrod, G. P. (2005). Remote sensing of volcanic ash. Tutorial developed for National Weather Association Remote Sensing Committee. http://www.ellrodweather.com/volcano/ash.htm.

  29. Ellrod, G. P., & Bailey, A. (2007). Assessment of aircraft icing potential and maximum icing altitude from geostationary meteorological satellite data. Weather and Forecasting, 22, 160–174.

    Article  Google Scholar 

  30. Ellrod, G. P., Connell, B., & Hillger, D. (2003). Improved detection of airborne volcanic ash using multi-spectral infrared satellite data. Journal of Geophysical Research, 108(D12), 4356.

    Article  Google Scholar 

  31. Ellrod, G. P., & Gultepe, I. (2007). Inferring low cloud base heights at night for aviation using satellite infrared and surface temperature data. Pure and Applied Geophysics, 164, 1193–1205.

    Article  Google Scholar 

  32. Ellrod, G. P., Maturi, E., & Steger, J. (1989). Detection of fog at night using dual channel GOES-VAS imagery. In Proc. 12th Conf. on Wea. Analysis and Forecasting, Monterey, California, Amer. Meteor. Soc. (pp. 515–520).

  33. Ellrod, G. P., & Schreiner, A. (2004). A first look at volcanic ash detection in the GOES-12 era. In 11th Conf. on Aviation, Range, and Aerospace Meteorology, Hyannis, MA, 4–8 October 2004, Paper #8.13. Boston, MA: Amer. Meteor. Soc.

  34. Eyre, J. R., Brownscombe, J. L., & Allam, R. J. (1984). Detection of fog at night using Advanced Very High Resolution Radiometer (AVHRR) imagery. Meteorological Magazine, 114, 187–201.

    Google Scholar 

  35. Federal Aviation Administration (FAA). (2017). NextGen Weather FAQ: Weather Delays. https://www.faa.gov/nextgen/programs/weather/faq/.

  36. Fritz, S. (1965). The significance of mountain lee waves as seen from satellite pictures. Journal of Applied Meteorology, 4, 31–37.

    Article  Google Scholar 

  37. Goodman, S. J., Blakeslee, R. J., Koshak, W. J., Mach, D., Bailey, J., Buechler, D., et al. (2013). The GOES-R Geostationary Lightning Mapper (GLM). Atmospheric Research, 125–126, 34–49.

    Article  Google Scholar 

  38. Gravelle, C., Mecikalski, J., Line, W., Bedka, K., Petersen, R., Sieglaff, J., et al. (2016). Satellite convective toolkit to “bridge the gap” between severe weather watches and warnings: An example from the 20 May 2013 Moore, Oklahome tornado outbreak. Bulletin of the American Meteorological Society, 97(1), 69–84.

    Article  Google Scholar 

  39. Gultepe, I., Pagowski, M., & Reid, J. (2007). Using surface data to validate a satellite based fog detection scheme. Weather and Forecasting, 22, 444–456.

    Article  Google Scholar 

  40. Gurka, J. J. (1978). The use of enhanced visible imagery for predicting the time of fog dissipation. In Proc. Conf. on Weather Forecasting and Analysis and Aviation Meteorology, Silver Spring, MD, Amer. Meteor. Soc., (pp. 343–346).

  41. Han, H., Lee, S., Im, J., Kim, M., Lee, M.-I., Ahn, M., et al. (2015). Detection of convective initiation using Meteorological Imager onboard Communications, Ocean, and Meteorological Satellite based on machine learning approaches. Remote Sensing, 7, 9184–9204.

    Article  Google Scholar 

  42. Hartung, D. C., Sieglaff, J. M., Cronce, L. M., & Feltz, W. F. (2013). An intercomparison of UW cloud-top cooling rates with WSR-88D radar data. Weather and Forecasting, 28, 463–480.

    Article  Google Scholar 

  43. Heymsfield, G. M., & Blackmer, R. H. (1988). Satellite-observed characteristics of Midwest severe thunderstorm anvils. Monthly Weather Review, 116, 2200–2224.

    Article  Google Scholar 

  44. Hillger, D., Kopp, T., Lee, T., Lindsey, D., Seaman, C., Miller, S., et al. (2013). First-light imagery from Suomi NPP VIIRS. Bulletin of the American Meteorological Society, 94, 1019–1029.

    Article  Google Scholar 

  45. Hufford, G., Salinas, L., Simpson, J., Barske, E., & Pieri, D. (2000). Operational implications of airborne volcanic ash. Bulletin of the American Meteorological Society, 81(4), 745–755.

    Article  Google Scholar 

  46. Kessinger, C., Megenhardt, D., Blackburn, G., Olivo, J., Lin, L., Hoang, V., Nayote, M., Sievers, K., Ritter, A., Wolf, D., Matz, O., Scheinhartz, R., & Cahall, J. (2017). Displaying convective weather products on an electronic flight bag. Journal of Air Traffic Control, Fall Issue, 52–61.

  47. Kim, D., & Ahn, M. (2014). Introduction of the in-orbit test and its performance for the first meteorological imager of the Communications, Ocean and Meteorological Satellite. Atmospheric Measurement Techniques, 7, 2471–2485.

    Article  Google Scholar 

  48. Knox, J., Bachmeier, S., Carter, W., Tarantino, J., Paulik, L., Wilson, E., Bechdol, G., & Mays, M. (2010). Transverse cirrus bands in weather systems: a grand tour of an enduring enigma. Weather Magazine, 65(2), 35–41. https://doi.org/10.1002/wea.417.

    Article  Google Scholar 

  49. Lay, E. H., Holzworth, R. H., Rodger, C. J., Thomas, J. N., Pinto, O., & Dowden, R. L. (2004). WWLL global lightning detection system: Regional validation study in Brazil. Geophysical Research Letters, 31, L03102. https://doi.org/10.1029/2003GL018882.

    Google Scholar 

  50. Lee, Y.-K., Li, Z., Li, J., & Schmit, T. (2014). Evaluation of the GOES-R ABI LAP retrieval algorithm using the GOES-13 sounder. Journal of Atmospheric and Oceanic Technology, 31(1), 3–19.

    Article  Google Scholar 

  51. Lee, T. F., Turk, F. J., & Richardson, K. (1997). Stratus and fog products using GOES-8-9 3.9 µm data. Weather and Forecasting, 12, 664–677.

    Article  Google Scholar 

  52. Li, Z., Li, J., Menzel, W. P., Schmit, T. J., Nelson, J. P., III, Daniels, J., et al. (2008). GOES sounding improvement and applications to severe storm nowcasting. Geophysical Research Letters, 35, L03806. https://doi.org/10.1029/2007gl032797.

    Google Scholar 

  53. Lilly, D. K. (1978). A severe downslope windstorm and aircraft turbulence event induced by a mountain wave. Journal of the Atmospheric Sciences, 34, 59–77.

    Article  Google Scholar 

  54. Lindstrom, S. (2017). Harvey and GLM Lightning. CIMSS Satellite Blog, Cooperative Institute for Meteorological Satellite Studies, 25 August 2017. http://cimss.ssec.wisc.edu/goes/blog/archives/date/2017/08/page/2.

  55. Liu, C., & Heckman, S. (2011). The application of total lightning detection and cell tracking for severe weather prediction. In 91st American Meteorological Society Annual Meeting, Seattle, 1–10.

  56. Martin, D. W., Kohrs, R. A., Mosher, F. R., Medaglia, C. M., & Adamo, C. (2008). Over-ocean validation of the Global Convective Diagnostic. Journal of Applied Meteorology and Climatology, 47, 525–543.

    Article  Google Scholar 

  57. McCann, D. W. (1983). The enhanced-V, a satellite observable severe storm signature. Monthly Weather Review, 111, 887–894.

    Article  Google Scholar 

  58. Mecikalski, J., & Bedka, K. (2006). Forecasting convective initiation by monitoring the evolution of moving cumulus in daytime GOES imagery. Monthly Weather Review, 134, 49–77.

    Article  Google Scholar 

  59. Mecikalski, J., Williams, J. K., Jewett, C. P., Ahijevych, D., LeRoy, A., & Walker, J. R. (2015). Probabilistic 0–1-h convective initiation nowcasts that combine geostationary satellite observations and numerical weather prediction model data. Journal of Applied Meteorology and Climatology, 54, 1039–1059. https://doi.org/10.1175/JAMC-D-14-0129.1.

    Article  Google Scholar 

  60. Menzel, W. P., Holt, F. C., Schmit, T. J., Aune, R., Schreiner, A. J., Wade, G. S., et al. (1998). Application of GOES-8/9 soundings to weather forecasting and nowcasting. Bulletin of the American Meteorological Society, 10, 2059–2077.

    Article  Google Scholar 

  61. Menzel, W. P., & Purdom, J. F. W. (1994). Introducing GOES-I: The first of a new generation of geostationary operational environmental satellites. Bulletin of the American Meteorological Society, 75, 757–780.

    Article  Google Scholar 

  62. Merk, D., & Zinner, T. (2013). Detection of convective initiation using Meteosat SEVIRI implementation in and verification with the tracking and nowcasting algorithm Cb-TRAM. Atmospheric Measurement Techniques, 6, 1903–1918.

    Article  Google Scholar 

  63. Miller, T., & Casadevall, T. (2000). Volcanic ash hazards to aviation: Encyclopedia of volcanoes. In H. Sigurdsson (Ed.), (pp. 915–930) San Diego, California: Academic.

  64. Miller, S. D., Schmit, T., Seaman, C., Lindsey, D., Gunshor, M., Kohrs, R., et al. (2016). A sight for sore eyes: The return of true color to geostationary satellites. Bulletin of the American Meteorological Society, 97, 1803–1816.

    Article  Google Scholar 

  65. Minnis, P., et al. (2004). Real-time cloud, radiation, and aircraft icing parameters from GOES over the USA. In 13th Conf. on Satellite Oceanography and Meteorolology, Norfolk, Virginia, Amer. Meteor. Soc., P7.1. http://ams.confex.com/ams/pdfpapers/79179.pdf.

  66. Smith, W. L. Jr, Minnis, P., Bernstein, B. C., McDonough, F., & Khaiyer, M. M. (2003). Comparison of super-cooled liquid water cloud properties derived from satellite and aircraft measurements. In Proc. in-flight icing/de-icing int. conf., Chicago, IL, Federal Aviation Administration 2003-01-2156.

  67. Smith, W. L. Jr, Minnis, P., & Young, D. F. (2000). An icing product derived from operational satellite data. In Proc. AMS 9th conference on aviation, range and aerospace meteorology, 11–15 September 2000 (pp. 256–259). Orlando, FL: Amer. Meteor. Soc.

  68. Mohr, T. (2014). Preparing for the use of new generation geostationary meteorological satellites. WMO Bulletin, 63, 42–44.

    Google Scholar 

  69. Morel, P., Desbois, M., & Szewach, G. (1978). A new insight into the troposphere with the water vapor channel of Meteosat. Bulletin of the American Meteorological Society, 59, 711–714.

    Article  Google Scholar 

  70. Mosher, F. R. (2001). A satellite diagnostic of global convection. In 11th Conf. on Satellite Meteorology and Oceanography (pp. 416–419). Madison, Wisconsin: Amer. Meteor. Soc.

  71. Mosher, F. R. (2002). Detection of deep convection around the globe. In 10th Conf. on Aviation, Range, and Aerospace Meteorology (pp. 289–292). Portland, Oregon: Amer. Meteor. Soc.

  72. Negri, A. J., & Adler, R. F. (1981). Relation of satellite-based thunderstorm intensity to radar-estimated rainfall. Journal of Applied Meteorology, 20, 288–300.

    Article  Google Scholar 

  73. Pavolonis, M. J. (2010). Advances in extracting cloud composition information from spaceborne infrared radiances—A robust alternative to brightness temperatures. Part I: Theory. Journal of Applied Meteorology and Climatology, 49(9), 1992–2012.

    Article  Google Scholar 

  74. Pavolonis, M. J. (2018). Personal communication.

  75. Pavolonis, M. J., Feltz, W. F., Heidinger, A. K., & Gallina, G. M. (2005). A daytime complement to the reverse absorption technique for improved automated detection of volcanic ash. Journal of Atmospheric and Oceanic Technology, 23, 1422–1444.

    Article  Google Scholar 

  76. Pavolonis, M. J., Heidinger, A., & Sieglaff, J. (2013). Automated retrievals of volcanic ash and dust cloud properties from upwelling infrared measurements. Journal of Geophysical Research-Atmospheres, 118(3), 1436–1458.

    Article  Google Scholar 

  77. Pavolonis, M. J., Sieglaff, J. M., & Cintineo, J. L. (2015a). Spectrally enhanced cloud objects (SECO): A generalized framework for automated detection of volcanic ash and dust clouds using passive satellite measurements, Part I: Multispectral analysis. Journal of Geophysical Research: Atmospheres, 120, 7813–7841.

    Google Scholar 

  78. Pavolonis, M. J., Sieglaff, J. M., & Cintineo, J. L. (2015b). Spectrally enhanced cloud objects (SECO): A generalized framework for automated detection of volcanic ash and dust clouds using passive satellite measurements, part II: Cloud object analysis and global application. Journal of Geophysical Research: Atmospheres, 120, 7842–7870.

    Google Scholar 

  79. Prata, F. (1989). Observations of volcanic ash clouds in the 10–12 µm window using AVHRR/2 data. International Journal of Remote Sensing, 10, 751–761.

    Article  Google Scholar 

  80. Prata, F., Schreiner, A., Schmit, T. J., & Ellrod, G. P. (2004). First measurements of volcanic sulfur dioxide from the GOES Sounder: Implications for improved aviation safety. In Proceedings, 2nd Intl. Conf. on Volcanic Ash and Aviation Safety, 21–24 June 2004, Alexandria, Virginia, Paper number 3.7.

  81. Pryor K. (2010). Recent developments in microburst nowcasting using GOES. In 17th conf. on satellite meteorology and oceanography (p. 9.7). Annapolis, Maryland: Amer. Meteor. Soc.

  82. Pryor K. (2012). Microburst nowcasting applications of GOES. In 18th conf. on satellite meteorology, oceanography and climatology (p. 471). New Orleans, Louisiana: Amer. Meteor. Soc.

  83. Pryor, K. (2014). Downburst prediction applications of meteorological geostationary satellites. In Proc. SPIE conf. on remote sensing of the atmosphere, clouds, and precipitation V, Beijing, China. https://doi.org/10.1117/12.2069283.

  84. Pryor, K. (2015). Progress and developments of downburst prediction applications of GOES. Weather and Forecasting, 30, 1182–1200.

    Article  Google Scholar 

  85. Pryor, K. (2017). Advances in downburst monitoring and prediction with GOES-16. In 17th conf. on mesoscale processes, San Diego, CA, Amer. Meteor. Soc., Paper No. 10.6.

  86. Pryor, K., & Ellrod, G. P. (2004a). Recent improvements to the GOES microburst products. Weather and Forecasting, 19, 582–594.

    Article  Google Scholar 

  87. Pryor, K., & Ellrod, G. P. (2004b). WMSI—A new index for forecasting wet microburst severity. Electronic Journal Of Operational Meteorology, 5(3), 1–25.

    Google Scholar 

  88. Purdom, J. F. W. (1973). Meso-highs and satellite imagery. Monthly Weather Review, 101, 180–181.

    Article  Google Scholar 

  89. Purdom, J. F. W. (1976). Some uses of high-resolution GOES imagery in the mesoscale forecasting of convection and its behavior. Monthly Weather Review, 104, 1474–1483.

    Article  Google Scholar 

  90. Rauber, R., & Tokay, A. (1991). An explanation for the existence of supercooled water at the top of cold clouds. Journal of Atmospheric Science, 48, 1005–1023.

    Article  Google Scholar 

  91. Rose, W. I., Kostinski, A. B., & Kelley, L. (1995). Real time C band radar observations of 1992 eruption clouds from Crater Peak/Spurr Volcano, Alaska. U. S. Geological Survey Bulletin 2139, p. 19.

  92. Rose, W. I., & Mayberry, G. C. (2000). Use of GOES thermal infrared imagery for eruption scale measurements, Soufriere Hills, Montserrat. Geophysical Research Letters, 27, 3097–3100.

    Article  Google Scholar 

  93. Schmetz, J., Pili, P., Tjemkes, S., Just, D., Kerkmann, J., Rota, S., et al. (2002). An introduction to Meteosat Second Generation (MSG). Bulletin of the American Meteorological Society, 83, 977–992.

    Article  Google Scholar 

  94. Schmetz, J., Tjemkes, S. A., Gube, M., & van de Berg, L. (1997). Monitoring deep convection and convective overshooting with METEOSAT. Advances in Space Research, 19, 433–441.

    Article  Google Scholar 

  95. Schmit, T., Goodman, S., Gunshor, M., Sieglaff, J., Heidinger, A., Bachmeier, S., et al. (2015). Rapid refresh information of significant events: Preparing users for the next generation of geostationary operational satellites. Bulletin of the American Meteorological Society, 96, 561–575.

    Article  Google Scholar 

  96. Schmit, T., Griffith, P., Gunshor, M., Daniels, J., Goodman, S., & Lebair, W. (2017). A closer look at the ABI on the GOES-R series. Bulletin of the American Meteorological Society, 98(4), 681–698.

    Article  Google Scholar 

  97. Schmit, T., Gunshor, M., Menzel, W. P., Gurka, J., Li, J., & Bachmeier, S. (2005). Introducing the next-generation Advanced Baseline Imager on GOES-R. Bulletin of the American Meteorological Society, 86, 1079–1096.

    Article  Google Scholar 

  98. Schmit, T., Li, J., Gurka, J. J., Goldberg, M. D., Schrab, K. J., Li, J., et al. (2008). The GOES-R advanced baseline imager and the continuation of current sounder products. Journal of Applied Meteorology and Climatology, 47, 2696–2711.

    Article  Google Scholar 

  99. Schultz, C. J., Petersen, W. A., & Carey, L. D. (2009). Preliminary development and evaluation of lightning jump algorithms for the real-time detection of severe weather. Journal of Applied Meteorology and Climatology, 48, 2543–2563.

    Article  Google Scholar 

  100. Seftor, C. J., Hsu, N., Herman, J., Bhartia, P., Torres, O., Rose, W., et al. (1997). Detection of volcanic ash clouds from Nimbus 7/Total Ozone Mapping Spectrometer. Journal of Geophysical Research, 102(D14), 16749–16760.

    Article  Google Scholar 

  101. Sikdar, D. N., Suomi, V. E., & Anderson, C. E. (1970). Convective transport of mass and energy in severe storms over the United States—An estimate from a geostationary altitude. Tellus, 22, 521–532.

    Article  Google Scholar 

  102. Smith, W. L., Jr., Minnis, P., Fleeger, C., Spangenberg, D., Palikonda, R., & Nguyen, L. (2012). Determining the Flight Icing Threat to aircraft with single-layer cloud parameters derived from operational satellite data. Journal of Applied Meteorology and Climatology, 51, 1794–1810.

    Article  Google Scholar 

  103. Smith, W. L., Jr., Suomi, V., Menzel, W., Woolf, H., Sromovsky, L., Revercomb, H., et al. (1981). First sounding results from VAS-D. Bulletin of the American Meteorological Society, 62, 232–236.

    Article  Google Scholar 

  104. Srivastava, R. C. (1987). A model of intense downdrafts driven by the melting and evaporation of precipitation. Journal of Atmospheric Science, 44, 1752–1773.

    Article  Google Scholar 

  105. Suomi, V. E., & Krauss, R. J. (1978). The spin scan camera system: Geostationary meteorological satellite workhorse for a decade. Optical Engineering, 17, 6–13.

    Article  Google Scholar 

  106. Tag, P., Bankert, R., & Brody, L. (2000). An AVHRR multiple cloud-type classification package. Journal of Applied Meteorology, 39, 125–134.

    Article  Google Scholar 

  107. Thompson, G., Bullock, R., & Lee, T. F. (1997). Using satellite data to reduce spatial extent of diagnosed icing. Weather and Forecasting, 12, 185–190.

    Article  Google Scholar 

  108. University of Wisconsin CIMSS. (2017). GOES-R Fog Product Examples, 17 October 2017. http://fusedfog.ssec.wisc.edu/?cat=18.

  109. Wakimoto, R. M. (1985). Forecasting dry microburst activity over the High Plains. Monthly Weather Review, 113, 1131–1143.

    Article  Google Scholar 

  110. Walker, J. R., MacKenzie, W. M., Jr., Mecikalski, J. R., & Jewett, C. P. (2012). An enhanced geostationary satellite-based convective initiation algorithm for 0–2-h nowcasting with object tracking. Journal of Applied Meteorology and Climatology, 51, 1931–1949. https://doi.org/10.1175/JAMC-D-11-0246.1.

    Article  Google Scholar 

  111. Wimmers, A. J., & Feltz, W. (2010). Tropopause folding turbulence product. GOES-R Algorithm Theoretical Basis Document (ATBD). NOAA Center for Satellite Applications and Research. https://www.goes-r.gov/products/ATBDs/option2/Aviation_Turbulence_v1.0_no_color.pdf.

  112. Wimmers, A. J., Griffin, S., Gerth, J., Bachmeier, S., & Lindstrom, S. (2018). Observations of gravity waves with high-pass filtering in the new generation of geostationary imagers and their relation to aircraft turbulence. Weather and Forecasting, 33, 139–144.

    Article  Google Scholar 

  113. Wimmers, A. J., & Moody, J. L. (2001). A fixed-layer estimation of upper tropospheric specific humidity from the GOES water vapor channel: Parameterization and validation of the altered brightness temperature product. Journal of Geophysical Research, 106(D15), 17115–17132.

    Article  Google Scholar 

  114. Wimmers, A. J., & Moody, J. L. (2004a). Tropopause folding at satellite-observed spatial gradients: 1. Verification of an empirical relationship. Journal of Geophysical Research, 109, D19306. https://doi.org/10.1029/2003JD004145.

    Article  Google Scholar 

  115. Wimmers, A. J., & Moody, J. L. (2004b). Tropopause folding at satellite-observed spatial gradients: 2. Development of an empirical model. Journal of Geophysical Research, 109, D19307. https://doi.org/10.1029/2003JD004146.

    Article  Google Scholar 

  116. Yang, J., Zhang, Z., Wei, C., Lu, F., & Guo, Q. (2017). Introducing the new generation of Chinese geostationary weather satellites, Fengyun-4. Bulletin of the American Meteorological Society, 98, 1637–1659.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Michael Pavolonis (NOAA/CIMSS) for his contributions to the section on volcanic ash detection. Many of the images in this paper were obtained from the University of Wisconsin CIMSS blog pages on the use of improved satellite image data from GOES-R (16) and Himiwari. We also acknowledge the comments of two anonymous reviewers that greatly improved the quality of the paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gary P. Ellrod.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ellrod, G.P., Pryor, K. Applications of Geostationary Satellite Data to Aviation. Pure Appl. Geophys. 176, 2017–2043 (2019). https://doi.org/10.1007/s00024-018-1821-1

Download citation

Keywords

  • Aviation weather
  • geostationary satellites
  • GOES-R
  • Himiwari
  • Meteosat
  • Fengyun
  • ABI
  • AHI
  • SEVIRI
  • thunderstorms
  • convective initiation
  • fog
  • low stratus
  • volcanic ash
  • volcanic SO2
  • aircraft icing
  • microbursts
  • geostationary lightning mapper