Skip to main content
Log in

Ultrasonic P- and S-Wave Attenuation and Petrophysical Properties of Deccan Flood Basalts, India, as Revealed by Borehole Studies

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Petrophysical properties and ultrasonic P- and S-wave attenuation measurements on 35 Deccan basalt core specimens, recovered from Killari borehole site in western India, provide unique reference data-sets for a lesser studied Deccan Volcanic Province. These samples represent 338-m-thick basaltic column, consisting four lava flows each of Ambenali and Poladpur Formations, belonging to Wai Subgroup of the Deccan volcanic sequence. These basalt samples are found to be iron-rich (average FeOT: 13.4 wt%), but relatively poor in silica content (average SiO2: 47.8 wt%). The saturated massive basalt cores are characterized by a mean density of 2.91 g/cm3 (range 2.80–3.01 g/cm3) and mean P- and S-wave velocities of 5.89 km/s (range 5.01–6.50 km/s) and 3.43 km/s (range 2.84–3.69 km/s), respectively. In comparison, saturated vesicular basalt cores show a wide range in density (2.40–2.79 g/cm3) as well as P-wave (3.28–4.78 km/s) and S-wave (1.70–2.95 km/s) velocities. Based on the present study, the Deccan volcanic sequence can be assigned a weighted mean density of 2.74 g/cm3 and a low Vp and Vs of 5.00 and 3.00 km/s, respectively. Such low velocities in Deccan basalts can be attributed mainly to the presence of fine-grained glassy material, high iron contents, and hydrothermally altered secondary mineral products, besides higher porosity in vesicular samples. The measured Q values in saturated massive basalt cores vary enormously (Qp: 33–1960 and Qs: 35–506), while saturated vesicular basalt samples exhibit somewhat lesser variation in Qp (6–46) as well as Qs (5–49). In general, high-porosity rocks exhibit high attenuation, but we observed the high value of attenuation in some of the massive basalt core samples also. In such cases, energy loss is mainly due to the presence of fine-grained glassy material as well as secondary alteration products like chlorophaeite, that could contribute to intrinsic attenuation. Dominance of weekly bound secondary minerals might also be responsible for the generation of microcracks, which may generate squirt flow in saturated samples. Hence, we argue that the Deccan basalts attenuate seismic energy significantly, where its composition plays a major role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Beane, J. E., Turner, C. A., Hooper, P. R., Subbarao, K. V., & Walsh, J. N. (1986). Stratigraphy, composition and form of the Deccan Basalts, Western Ghats, India. Bulletin Volcanology, 48, 61–83.

    Article  Google Scholar 

  • Birch, F. (1960). The velocity of compressional waves in rocks to 10 Kilobars, part 1. Journal of Geophysical Research, 65, 1083–1102.

    Article  Google Scholar 

  • Birch, F. (1961a). Composition of the earth’s mantle. Geophysical Journal of Royal Astronomical Society, 4, 295–311.

    Article  Google Scholar 

  • Birch, F. (1961b). The velocity of compressional waves in rocks to 10 kilobars, part 2. Journal of Geophysical Research, 66, 2199–2224.

    Article  Google Scholar 

  • Brown, E. T. (1981). Rock characterization testing and monitoring: ISRM suggested methods. Oxford, New York: International Society of Rock Mechanics.

    Google Scholar 

  • Carlson, R. L., & Herrick, C. N. (1990). Densities and porosities in the oceanic crust and their variation with depth and age. Journal of Geophysical Research, 95, 9153–9170.

    Article  Google Scholar 

  • Cerney, B., & Carlson, R. L. (1999). The effect of cracks on the seismic velocities of Basalt from site 990, SE Greenland margin. Proceeding of the Ocean Drilling Program, Scientific Results, 163, 29–35.

    Google Scholar 

  • Chatterjee, N., & Bhattacharji, S. (2008). Trace elements variation in Deccan basalts: Role of mantle melting, fractional crystallization and crustal assimilation. Journal of Geological Society of India, 71, 171–188.

    Google Scholar 

  • Christensen, N. I. (1968). Compressional wave velocities in basic rocks. Pacific Science, XXII, 41–44.

    Google Scholar 

  • Christensen, N. I., Blair, S. C., Wilkens, R. H., & Salisbury, M. H. (1980). Compressional wave velocities, densities, and porosities of basalts from Holes 417A, 417 D, and 418 A. Deep Sea Drilling Project Legs 51–53. In: T. Donnelly et al. (Eds.), Init. Reports DSDP, 51,52,53 (part 2, pp. 1467–1471).

  • Christensen, N. I., & Mooney, W. D. (1995). Seismic velocity structure and composition of the continental crust: A global view. Journal of Geophysical Research, 100, 9761–9788.

    Article  Google Scholar 

  • Courtillot, V., Feraud, G., Maluski, H., Vandamme, D., Moreau, M. G., & Besse, J. (1988). Deccan flood basalts and the cretaceous/tertiary boundary. Nature, 333, 843–846.

    Article  Google Scholar 

  • Cox, K. G., & Hawkesworth, C. J. (1985). Geochemical Stratigraphy of the Deccan Traps at Mahabaleshwar, Western Ghats, India, with implications for open system magmatic process. Journal of Petrology, 26, 355–377.

    Article  Google Scholar 

  • Cox, K. G., & Mitchell, C. (1988). Importance of crystal settling in the differentiation of Deccan Trap basaltic magmas. Nature, 333, 447–449.

    Article  Google Scholar 

  • Dixit, M. M., Tewari, H. C., & Visweswara Rao, C. (2010). Two-dimensional velocity model of the crust beneath the South Cambay Basin, India from refraction and wide-angle reflection data. Geophysical Journal International, 181, 635–652.

    Google Scholar 

  • Goldberg, D., & Sun, Y. F. (1997). Attenuation differences in layer 2A in intermediate- and slow-spreading oceanic crust. Earth and Planetary Science Letters, 150, 221–231.

    Article  Google Scholar 

  • Goldberg, D., & Yin, C. S. (1994). Attenuation of p-waves in oceanic crust: Multiple scattering from observed heterogeneities. Geophysical Research Letters, 21, 2311–2314.

    Article  Google Scholar 

  • Gradstein, F. M., Ogg, J. G., Schmitz, M. D., & Ogg, G. M. (2012). The Geologic Time Scale 2012. Amsterdam: Elsevier.

    Google Scholar 

  • Gupta, H. K., & Dwivedi, K. K. (1996). Drilling at Latur earthquake region exposes a peninsular gneiss basement. Journal of Geological Society of India, 47, 129–131.

    Google Scholar 

  • Gupta, H. K., & Gupta, G. D. (2003). Earthquake studies in Peninsular India since 1993. Memoir Geological Society of India, 54, 254.

    Google Scholar 

  • Gupta, H. K., Mohan, I., Rastogi, B. K., Rao, C. V. K., & Rao, G. V., et al. (1993). Investigation of Latur earthquakes of September 30, 1993. In: Abstract Volume, Workshop on 30 September 1993 Maharashtra Earthquake, December 24, 1993, Hyderabad, pp. 2–3

  • Gupta, H. K., Srinivasan, R., Rao, R. U. M., Rao, G. V., Reddy, G. K., Roy, S., et al. (2003). Borehole investigations in the surface rupture zone of the 1993 Latur SCR earthquake, Maharashtra, India: Overview of results. Memoir Geological Society of India, 54, 1–22.

    Google Scholar 

  • Ivankina, T. I., Kern, H. M., & Nikitin, A. N. (2005). Directional dependence of P- and S-wave propagation and polarization in foliated rocks from Kola superdeep well: Evidence from laboratory measurements and calculations based on TOF neutron diffraction. Tectonophysics, 407, 25–42.

    Article  Google Scholar 

  • Jay, A. E., & Widdowson, M. (2008). Stratigraphy, structure and volcanology of the SE Deccan continental flood basalt province: Implications for eruptive extent and volumes. Journal Geological Society of London, 165, 177–188.

    Article  Google Scholar 

  • Ji, S., Wang, Q., & Salisbury, M. H. (2009). Composition and tectonic evolution of the Chinese continental crust constrained by Poissons’ ratio. Tectonophysics, 463, 15–30.

    Article  Google Scholar 

  • Kern, H., Megjel, K., Strauss, K. W., Ivankina, T. I., Nikitin, A. N., & Kukkonen, I. T. (2009). Elastic wave velocities, chemistry and modal mineralogy of crustal rocks sampled by the Outokumpu scientific drill hole: Evidence from lab measurements and modeling. Physics of the Earth and Planetary Interiors, 175, 151–166.

    Article  Google Scholar 

  • Kern, H., Walther, C. H., Fluh, E. R., & Marker, M. (1993). Seismic properties of rocks exposed in the POLAR profile region—Constraints on the interpretation of the refraction data. Precambrian Research, 64, 169–187.

    Article  Google Scholar 

  • Krishna, A. K., & Govil, P. K. (2007). Soil contamination due to heavy metals from an Industrial area of Surat, Gujarat, Western India. Environmental Monitoring and Assessment, 124, 263–275. https://doi.org/10.1007/s10661-006-9224-7.

    Article  Google Scholar 

  • Lewis, B. T. R., & Jung, H. (1989). Attenuation of refracted seismic waves in young oceanic crust. Bulletin of the Seismological Society of America, 79, 1070–1088.

    Google Scholar 

  • Lightfoot, P. C., Hawkesworth, C. J., Devey, C. W., Rogers, N. W., & Van Calsteren, P. W. C. (1990). Source and differentiation of Deccan trap lavas: Implications of geochemical and mineral chemical variations. Journal of Petrology, 31, 1165–1200.

    Article  Google Scholar 

  • Mahoney, J. J. (1988). Deccan traps. In J. D. Macdougall (Ed.), Continental flood basalts (pp. 151–194). Dordrecht: Kluwer Academic.

    Chapter  Google Scholar 

  • Mitchell, C. H., & Widdowson, M. (1991). A geological map of the southern Deccan, India and its structural implications. Journal of Geological Society of London, 148, 495–505.

    Article  Google Scholar 

  • Moose, D., & Zoback, M. D. (1983). In situ studies of velocity in fractured crystallined rock. Journal of Geophysical Research, 88(B3), 2345–2358.

    Article  Google Scholar 

  • Murphy, W. F. (1982). Effects of partial water saturation on attenuation in Massilon sandstone and Vycor porous glass. The Journal of the Acoustical Society of America, 71(6), 1458–1468. https://doi.org/10.1121/1.387843.

    Article  Google Scholar 

  • Murty, A. S. N., Koteswara Rao, P., Dixit, M. M., Kesava Rao, G., Reddy, M. S., Prasad, B. R., et al. (2011). Basement configuration of the Jhagadia-Rajpipla profile in the western part of Deccan syneclise, India from travel-time inversion of seismic refraction and wide-angle reflection data. Journal of Asian Earth Sciences, 40, 40–51.

    Article  Google Scholar 

  • Murty, A. S. N., Rajendra Prasad, B., Rao, Koteswara, Raju, S., & Sateesh, T. (2010). Delineation of subtrappean Mesozoic sediments in Deccan syneclise, India, using travel-time inversion of seismic refraction and wide-angle reflection data. Pure and Applied Geophysics, 167, 233–251.

    Article  Google Scholar 

  • Pandey, O. P. (2008). Deccan Trap volcanic eruption affected the Archean Dharwar craton of southern India: Seismic evidences. Journal of Geological Society of India, 72, 510–514.

    Google Scholar 

  • Pandey, O. P. (2009). Shallowing of mafic crust and seismic instability in the high velocity Indian shield. Journal of Geological Society of India, 74, 615–624.

    Article  Google Scholar 

  • Pandey, O. P. (2016). Deep Scientific drilling results from Koyna and Killari earthquake regions reveal why Indian shield lithosphere is unusual, thin and warm. Geoscience Frontiers, 7, 851–858. https://doi.org/10.1016/j.gsf.2015.08.010.

    Article  Google Scholar 

  • Pandey, O. P., Chandrakala, K., Parthasarathy, G., Reddy, P. R., & Koti Reddy, G. (2009). Upwarped high-velocity mafic crust, subsurface tectonics and causes of intraplate Latur-Killari (M 6.2) and Koyna (M 6.3) earthquakes, India—A comparative study. Journal of Asian Earth Sciences, 34, 781–795.

    Article  Google Scholar 

  • Pandey, O. P., Tripathi, P., Parthasarathy, G., Rajagopalan, V., & Sreedhar, B. (2014). Geochemical and mineralogical studies of chlorine-rich amphibole and biotite from the 2.5 Ga mid-crustal basement beneath the 1993 Killari earthquake region, Maharashtra, India: Evidence for mantle metasomatism beneath the Deccan Traps. Journal of Geological Society of India, 83, 599–612.

    Article  Google Scholar 

  • Pandey, O. P., Tripathi, P., Vedanti, M., & SrinivasaSarma, D. (2016). Anomalous seismic velocity drop in iron and biotite rich amphibolite to granulite facies transitional rocks from Deccan volcanic covered 1993 Killari earthquake region, Maharashtra (India): A case study. Pure and Applied Geophysics, 173, 2455–2471.

    Article  Google Scholar 

  • Parthasarathy, G. (2006). Zeolite zonation and amygdaloidal minerals from the Killari borehole of Deccan traps, Maharashtra, India. Journal of Applied Geochemistry, 8, 546–557.

    Google Scholar 

  • Parthasarathy, G., Choudary, B. M., Sreedhar, B., Kunwar, A. C., & Srinivasan, R. (2003). Ferrous saponite from Deccan Trap, India, and its application in adsorption and reduction of hexavalent chromium. American Mineralogist, 88, 1983–1988.

    Article  Google Scholar 

  • Prasanna Lakshmi, K. J., Senthil Kumar, P., Vijayakumar, K., Ravinder, S., Seshunarayana, T., & Sen, M. K. (2014). Petrophysical properties of the Deccan basalts exposed in the Western Ghats escarpment around Mahabaleshwar and Koyna, India. Journal of Asian Earth Sciences, 84, 176–187.

    Article  Google Scholar 

  • Ramana, Y. V., & Rao, M. V. M. S. (1974). Q by pulse broadening in rocks under pressure. Physics of the Earth and Planetary Interiors, 8(4), 337–341. https://doi.org/10.1016/0031-9201(74)90042-9.

    Article  Google Scholar 

  • Rao, M. V. M. S., & Prasanna Lakshmi, K. J. (2003). Shear-wave propagation in rocks and other lossy media: An experimental study. Current Science, 85, 1221–1225.

    Google Scholar 

  • Rao, M. V. M. S., Prasanna Lakshmi, K. J., Sarma, L. P., & Chary, K. B. (2006). Elastic properties of granulite facies rocks of Mahabalipuram, Tamil Nadu,India. Journal of Earth System Science, 115(6), 673–683. https://doi.org/10.1007/s12040-006-0005-z.

    Article  Google Scholar 

  • Reddy, G. K., Rao, G. V., & Rao, R. U. M. (1998). Low density of Deccan traps: Evidence from boreholes at Killari, Latur earthquake site and implications for geophysical modeling. In: Abstract volume, Chapman Conference on Stable Continental Region (SCR) earthquakes, Hyderabad, 25–29 January, p. 31.

  • Renne, P. R., Sprain, C. J., Richards, M. A., Self, S., Vanderkluysen, L., & Pande, K. (2015). State shift in Deccan volcanism at the Cretaceous-Paleogene boundary, possibly induced by impact. Science, 350(Issue 6256), 76–78.

    Article  Google Scholar 

  • Rudnick, R. L., & Fountain, D. M. (1995). Nature and composition of the continental crust: A lower crustal perspective. Reviews of Geophysics, 33, 267–309.

    Article  Google Scholar 

  • Sano, T., Fujii, T., Deshmukh, S. S., Fukuoka, T., & Aramaki, S. (2001). Differentiation process of Deccan trap basalts: Contribution from geochemistry and experimental petrology. Journal of Petrology, 42, 2175–2195.

    Article  Google Scholar 

  • Schoene, B., Samperton, K. M., Eddy, M. P., Keller, G., Adatte, T., et al. (2015). U-Pb geochronology of the Deccan Traps and relation to the end-Cretaceous mass extinction. Science, 347(6218), 182–184.

    Article  Google Scholar 

  • Sen, G. (2001). Generation of Deccan trap magmas. Proceedings of Indian Academy of Sciences (Earth Planet Sci.), 110, 409–431.

    Google Scholar 

  • Sen, G., Borges, M., & Marsh, B. D. (2006). A case for short duration of Deccan Trap eruption. EOS, 87(20), 197–204.

    Article  Google Scholar 

  • Sen, G., & Chandrasekharam, D. (2011). Deccan trap flood basalt province: An evaluation of the thermochemical plume model. In: J. Ray, et al. (Eds.), Topics in igneous petrology. https://doi.org/10.1007/978-90-481-9600-5_2.

  • Shrivastava, J. P., Duncan, R. A., & Kashyap, M. (2015). Post-K/PB younger 40Ar–39Ar ages of the Mandla lavas: Implications for the duration of the Deccan volcanism. Lithos, 224, 214–224.

    Article  Google Scholar 

  • Shrivastava, J. P., Kumar, R., & Rani, N. (2017). Feeder and post Deccan Trap dyke activities in the northern slope of the Satpura Mountain: Evidence from new 40Ar-39Ar ages. Geoscience Frontier, 8, 483–492.

    Article  Google Scholar 

  • Shrivastava, J. P., Mahoney, J. J., & Kashyap, M. R. (2014). Trace elemental and Nd-Sr-Pb isotopic compositional variation in 37 lava flows of the Mandla lobe and their chemical relation to the western Deccan stratigraphic succession, India. Mineralogy and Petrology, 108, 801–817.

    Article  Google Scholar 

  • Sun, S., Ji, S., Wang, Q., Xu, Z., Salisbury, M., & Long, C. (2012). Seismic velocities and anisotropy of core samples from the Chinese continental scientific drilling borehole in the Sulu UHP terrane, Eastern China. Journal of Geophysical Research, 117, B01206. https://doi.org/10.1029/2011JB008672.

    Article  Google Scholar 

  • Tisato, N., & Quintal, B. (2014). Laboratory measurements of seismic attenuation in sandstone: Strain versus fluid saturation effects. Geophysics, 79(5), WB9–WB14. https://doi.org/10.1190/geo2013-0419.1.

    Article  Google Scholar 

  • Tompkins, M. J., & Christensen, N. I. (2001). Ultrasonic P-and S-wave attenuation in Oceanic Basalt. Geophysical Journal International, 145, 172–186.

    Article  Google Scholar 

  • Tripathi, P. (2015). Nature and composition of crystalline basement below Deccan volcanic covered 1993 Latur-Killari earthquake region, Maharashtra (India). Ph.D. thesis, Osmania University, Hyderabad, India, p. 164.

  • Tripathi, P., Pandey, O. P., Rao, M. V. M. S., & Koti Reddy, G. (2012a). Elastic properties of amphibolite and granulite facies mid-crustal basement rocks of the Deccan volcanic covered 1993 Latur-Killari earthquake region, Maharashtra (India) and mantle metasomatism. Tectonophysics, 554–557, 159–168.

    Article  Google Scholar 

  • Tripathi, P., Parthasarathy, G., Masood Ahmed, S. M., & Pandey, O. P. (2012b). Mantle-derived fluids in the basement of the Deccan trap: Evidence from stable carbon and oxygen isotopes of carbonates from the Killari borehole basement, Maharashtra, India. International Journal of Earth Sciences, 101, 1385–1395.

    Article  Google Scholar 

  • Ullemeyer, K., Nikolayev, D. I., Christensen, N. I., & Behrmann, J. H. (2011). Evaluation of Intrinsic velocity–pressure trends from low-pressure P-wave velocity measurements in rocks containing microcracks. Geophysical Journal International, 185, 1312–1320.

    Article  Google Scholar 

  • Vedanti, N., Lakshmi, K. J. P., Dutta, S., Malkoti, A., & Pandey, O. P. (2015). Investigation of petrophysical properties and ultrasonic P-and S-wave attenuation in Deccan Flood Basalts, India. In: SEG technical program expanded abstracts, pp. 3274–3278, https://doi.org/10.1190/segam2015-5858683.1

  • Vijaya Kumar, K., Chavan, C., Sawant, S., Naga Raju, K., et al. (2010). Geochemical investigation of a semi-continuous extrusive basaltic section from the Deccan volcanic province, India: Implications for the mantle and magma chamber processes. Contributions to Mineralogy and Petrology, 159, 839–862.

    Article  Google Scholar 

  • Volarovitch, M. P., & Gurvitch, A. S. (1957). Investigation of dynamic moduli of elasticity for rocks in relation to temperature. Bulletin Academy of Sciences, USSR Geophysics Series, 4, 1–9.

    Google Scholar 

  • Walker, G. P. (1993). Basaltic-volcano systems. In: H. M. Richard, T. Alabaster, N. B. W. Harris, & C. R. Neary (Eds.), Magmatic processes and plate tectonics (pp. 3–38). Geological Society Special Publication no. 76.

  • Weiner, A. T., Manghnani, M. H., & Raj, R. (1987). Internal friction in tholeiitic basalts. Journal of Geophysics Research, 92(11), 635–643.

    Google Scholar 

  • Wepfer, W. W. (1989). Application of laboratory velocities and attenuation data to the Earth’s crust. Ph.D. Thesis, Purdue University, West Lafayette, IN.

  • Wepfer, W. W., & Christensen, N. I. (1990). Compressional wave attenuation in oceanic basalts. Journal of Geophysical Research, 95, 431–439.

    Article  Google Scholar 

  • Wepfer, W. W., & Christensen, N. I. (1991). Q-structure of the oceanic crust. Marine Geophysical Researches, 13(3), 227–237. https://doi.org/10.1007/BF00369151.

    Article  Google Scholar 

  • White, D. J., & Clowes, R. M. (1994). Seismic attenuation structure beneath the Juan de Fuca ridge from tomographic inversion of amplitudes. Journal of Geophysical Research, 99, 3043–3056.

    Article  Google Scholar 

  • Winkler, K. W., & Nur, A. (1982). Seismic attenuation: Effects of pore fluids and frictional sliding. Geophysics, 47, 1–15.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Drs. K.J.P. Lakshmi, Kesav Krishna and M. Satyanarayanan for petrophysical and geochemical analysis and Drs. D. V. Subbarao and Dinesh Pandit for petrological examination of the thin sections and many useful discussions. We are also thankful to Prof. Mrinal K. Sen, Ex-Director, CSIR-National Geophysical Research Institute, Hyderabad, for making available the samples for the analysis. This study has been supported by CSIR project SHORE PSC 0205. Dr. O.P. Pandey is thankful to CSIR for emeritus scientist position at CSIR-NGRI. One of the authors (AM) acknowledges UGC for providing Senior Research Fellowship. Further, highly constructive suggestions made by the anonymous reviewer and Prof. Y. Gueguen, Editor, Pure and Applied Geophysics, have been very helpful in improving the manuscript. Permission accorded by the Director CSIR-NGRI to publish this work, is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. P. Pandey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vedanti, N., Malkoti, A., Pandey, O.P. et al. Ultrasonic P- and S-Wave Attenuation and Petrophysical Properties of Deccan Flood Basalts, India, as Revealed by Borehole Studies. Pure Appl. Geophys. 175, 2905–2930 (2018). https://doi.org/10.1007/s00024-018-1817-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-018-1817-x

Keywords

Navigation