Skip to main content
Log in

Modeling Poroelastic Wave Propagation in a Real 2-D Complex Geological Structure Obtained via Self-Organizing Maps

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Two main stages of seismic modeling are geological model building and numerical computation of seismic response for the model. The quality of the computed seismic response is partly related to the type of model that is built. Therefore, the model building approaches become as important as seismic forward numerical methods. For this purpose, three petrophysical facies (sands, shales and limestones) are extracted from reflection seismic data and some seismic attributes via the clustering method called Self-Organizing Maps (SOM), which, in this context, serves as a geological model building tool. This model with all its properties is the input to the Optimal Implicit Staggered Finite Difference (OISFD) algorithm to create synthetic seismograms for poroelastic, poroacoustic and elastic media. The results show a good agreement between observed and 2-D synthetic seismograms. This demonstrates that the SOM classification method enables us to extract facies from seismic data and allows us to integrate the lithology at the borehole scale with the 2-D seismic data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. http://www.dynamics.unam.edu/DinamicaNoLineal3/labsom.htm.

References

  • Aki, K., & Richards, P. (1980). Quantitative seismology: theory and methods. San Francisco: W.H.Freeman and Co.

    Google Scholar 

  • Barnes, A. E. (2015). Hanbook of post-stack seismic attributes. Tulsa: SEG.

    Google Scholar 

  • Bauer, K., Munoz, G., & Moeck, I. (2012). Pattern recognition and lithological interpretation of collocated seismic and magnetotelluric models using self-organizing maps. Geophysical Journal International, 189, 984–998.

    Article  Google Scholar 

  • Bauer, K., Part, R. G., Haberland, C., & Weber, M. (2008). Neural network analysis of crosshole tomographic images: the seismic signature of gas hydrate bearing sediments in the Mackenzie Delta (NW Canada). Geophysical Research Letters, 35, 1–6.

    Article  Google Scholar 

  • Biot, M. A. (1956a). Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low frequency range. The Journal of the Acoustical Society of America, 28, 168–178.

    Article  Google Scholar 

  • Biot, M. A. (1956b). Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range. The Journal of the Acoustical Society of America, 28, 179–191.

    Article  Google Scholar 

  • Biot, M. A., & Willis, D. G. (1957). The elastic coefficients of the theory of consolidation. Journal of Applied Mechanics, 24, 594–601.

    Google Scholar 

  • Carcione, J. M., & Helle, H. (1999). Numerical solution of poroviscoelastic wave equation on a staggered grid. Journal of Computational Physics, 154, 520–527.

    Article  Google Scholar 

  • Carcione, J. M., Morency, C., & Santos, J. E. (2010). Computatinal poroelasticity: a review. Geophysics, 75(5), 75A229–75A243.

    Article  Google Scholar 

  • Carcione, J. M., & Quiroga-Goode, G. (1995). Some aspects of the physics and numerical modelling of Biot compressional waves. Journal of Computational Acoustics, 3(4), 261–280.

    Article  Google Scholar 

  • Claerbout, J. (1968). Synthesis of a layered medium from its acoustic transmission response. Geophysics, 33(2), 264–269.

    Article  Google Scholar 

  • Chopra, S., & Marfurt, K. (2007). Seismic attributes for prospect identification and reservoir characterization. Geophysical development series. Tulsa: Society of Exploration Geophysicists.

    Book  Google Scholar 

  • Day, W. H., & Edelsbrunner, H. (1984). Efficient algorithms for agglomerative hierarchical clustering methods. Journal of Cclassification, 1, 7–24.

    Article  Google Scholar 

  • Du, H.-K., Xing Cao, J., Juan Xue, Y., & Jian Wang, X. (2015). Seismic facies analysis based on self-organizing map empirical mode decomposition. Journal of Applied Geophysics, 112, 52–61.

    Article  Google Scholar 

  • Essenreiter, R., Karrenbach, M., & Treitel, S. (2001). Identification and classification of multiple reflections with self-organizing maps. Geophysical Prospecting, 49, 341–352.

    Article  Google Scholar 

  • Higuti, R. T., Furukawa, C. M., & Adamowski, J. C. (2001). Characterization of lubricating oil using ultrasound. Journal of the Brazilian Society of Mechanical Sciences, 23(4), 453–461. (paper No 306).

    Article  Google Scholar 

  • Haskell, N. A. (1953). The dispersion of surface waves on multilayered media. Bulletin of the Seismological Society of America, 43, 17–34.

    Google Scholar 

  • Haskell, N. A. (1960). Crustal reflection of plane SH waves. Journal of Geophysical Research, 65, 4147–4150.

    Article  Google Scholar 

  • Haskell, N. A. (1962). Crustal reflection of plane P and SV waves. Journal of Geophysical Research, 67, 4751–4767.

    Article  Google Scholar 

  • Itzá, R., Iturrarán-Viveros, U., & Parra, J. O. (2016). Optimal implicit 2-D finite differences to model wave propagation in poroelastic media. Geophysical Journal International, 204, 1–12.

    Article  Google Scholar 

  • Kennett, B., & Kerry, N. (1979). Seismic waves in a stratifed half-space. Geophysical Journal of the Royal Astronomical Society, 57, 557–583.

    Article  Google Scholar 

  • Klose, C. (2006). Self-organizing maps for geoscientific data analysis: geological interpretation of multidimensional geophysical data. Computer & Geosciences, 10, 265–277.

    Article  Google Scholar 

  • Kohonen, T. (1981). Automatic formation of topological maps of patterns in a self-organizing system. In: Oja, E., Simula, O. (eds.) Proc. 2nd Scand. Conf. on Image Analysis. Espoo: Suomen Hahmontunnistustutkimuksen Seura, Finland, pp. 214–220.

  • Kohonen, T. (1982). Self-organized formation of topological correct feature maps. Biological Cybernetics, 43, 59–69.

    Article  Google Scholar 

  • Kohonen, T. (2001). Self-organizing maps (3rd ed.). Berlin: Springer.

    Book  Google Scholar 

  • Kohonen, T. (2013). Essentials of the self-organizing map. Neural Networks, 37, 52–65.

    Article  Google Scholar 

  • Konaté, A. A., Pan, H., Fang, S., Asim, S., Ziggah, Y. Y., Deng, C., et al. (2015). Capability of self-organizing map neural network in geophysical log data classification: case study from the CCSD-MH. Journal of Applied Geophysics, 118, 37–46.

    Article  Google Scholar 

  • Liu, Y. (2014). Optimal staggered-grid finite-difference schemes based on least-squares for wave equation modelling. Geophysical Journal International, 197, 1033–1047.

    Article  Google Scholar 

  • Liu, Y., & Sen, M. K. (2009). A practical implicit finite-difference method: examples from seismic modelling. Journal of Geophysics and Engineering, 6, 231–249.

    Article  Google Scholar 

  • Masson, Y. J., Pride, S., & Nihei, K. (2006). Finite difference modeling of biots poroelastic equations at seismic frequencies. Journal of Geophysical Research, 11, 1–13.

    Google Scholar 

  • Özdenvar, T., & McMechan, G. (1997). Algorithms for staggered-grid computations for poroelastic, elastic, acoustic, and scalar wave equations. Geophysical Prospecting, 45, 403–420.

    Article  Google Scholar 

  • Parra, J. O., Hackert, C. L., & Bennett, M. W. (2006). Permeability and porosity images based on \(P\)-wave surface seismic data: application to a south Florida aquifer. Water Resources Research, 42, 1–14.

    Article  Google Scholar 

  • Parra, J. O., Iturrarán-Viveros, U., Parra, J. S., & Xu, P.-C. (2015). Attenuation and velocity estimation using rock physics and neural network methods for calibrating reflection seismograms. Interpretation, 3(1), SA121–SA133.

    Article  Google Scholar 

  • Roy, A., Dowdell, B. L., & Marfut, K. J. (2013). Characterizing a Mississippian tripolitic chert reservoir using 3D unsupervised and supervised multiattibute seismic facies analysis: An example from Osage County, Oklahoma. Interpretation, 2013, 109–124.

    Article  Google Scholar 

  • Roy, A., Marfut, K. J., 2012. Characterizing Mississippian tripolitic chert reservoir using unsupervised seismic facies analysis and well-logs: an example from Osage County, Oklahoma. In: SEG Expanded Abstracts. Tulsa Oklahoma, pp. 1-5.

  • Saraswat, P., & Sen, M. K. (2012). Artificial immune-based self-organizing maps for seismic-facies analysis. Geophysics, 77(4), O45–O53.

    Article  Google Scholar 

  • Stankiewicz, J., Bauer, K., & Ryberg, T. (2010). Lithology classification from seismic tomography: additional constraints from surface waves. Journal of African Earth Sciences, 58, 547–552.

    Article  Google Scholar 

  • Taner, M. T., Koheler, F., & Sheriff, R. E. (1979). Complex seismic trace analysis. Geophysics, 44, 1041–1106.

    Article  Google Scholar 

  • Taner, M. T., Schuelke, J., ODoherty, R., Baysal, B., 1994. Seismic attributes: revisited. In: SEG Expanded Abstracts. Tulsa Oklahoma, pp. 1104-1106.

  • Tselentis, G.-A., Martakis, N., Paraskevopoulos, P., & Lois, A. (2011). High-resolution passive seismic tomography for 3D velocity, Poissons ratio \(\nu\), and P-wave quality \({Q}_{P}\) in the Delvina hydrocarbon field, southern Albania. Geophysics, 76(2), B89–B112.

    Article  Google Scholar 

  • Vesanto, J., & Alhoniemi, E. (2000). Clustering of the Self-Organizing Map. IEEE Transactions on Neural Networks, 11(3), 1483–1501.

    Article  Google Scholar 

  • Ward, J. H. J. (1963). Hierarchical Grouping to Optimize an Objective Function. Journal of the American Statistical Association, 58, 236–244.

    Article  Google Scholar 

  • Zhu, X., & McMechan, G. A. (1991). Numerical simulation of seismic response of poroelastic reservoirs using Biot theory. Geophysics, 56, 328–339.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the two anonymous reviewers and the editor Andrew R. Gorman for kind comments that helped to improve this manuscript. This work was partially supported by CONACYT Mexico under PROINNOVA projects 241763, 231476; DGAPA UNAM project number IN100917. We thank Todd Thomas and the W.T. Waggoner Estate for providing the data. Work by RIB was partially supported by a postdoctoral fellowship at CIMAT-Mérida provided by CONACYT grant FOMIX-YUC 221183.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reymundo Itzá Balam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Itzá Balam, R., Iturrarán-Viveros, U. & Parra, J.O. Modeling Poroelastic Wave Propagation in a Real 2-D Complex Geological Structure Obtained via Self-Organizing Maps. Pure Appl. Geophys. 175, 2975–2986 (2018). https://doi.org/10.1007/s00024-018-1806-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-018-1806-0

Keywords

Navigation