Long-Term Trends, Variability and Extremes of In Situ Sea Surface Temperature Measured Along the Eastern Adriatic Coast and its Relationship to Hemispheric Processes

Abstract

This paper examines long-term series of in situ sea surface temperature (SST) data measured at nine coastal and one open sea stations along the eastern Adriatic Sea for the period 1959–2015. Monthly and yearly averages were used to document SST trends and variability, while clustering and connections to hemispheric indices were achieved by applying the Principal Component Analysis (PCA) and Self-Organizing Maps (SOM) method. Both PCA and SOM revealed the dominance of temporal changes with respect to the effects of spatial differences in SST anomalies, indicating the prevalence of hemispheric processes over local dynamics, such as bora wind spatial inhomogeneity. SST extremes were connected with blocking atmospheric patterns. A substantial warming between 1979 and 2015, in total exceeding 1 °C, was preceded by a period with a negative SST trend, implying strong multidecadal variability in the Adriatic. The strongest connection was found between yearly SST and the East Atlantic (EA) pattern, while North Atlantic Oscillation (NAO) and East Atlantic/West Russia (EAWR) patterns were found to also affect February SST values. Quantification of the Adriatic SST and their connection to hemispheric indices allow for more precise projections of future SST, considered to be rather important for Adriatic thermohaline circulation, biogeochemistry and fisheries, and sensitive to ongoing climate change.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Batistić, M., Garić, R., & Molinero, J. C. (2014). Interannual variations in Adriatic Sea zooplankton mirror shifts in circulation regimes in the Ionian Sea. Climate Research, 61, 231–240.

    Article  Google Scholar 

  2. Bice, D., Montanari, A., Vučetić, V., & Vučetić, M. (2012). The influence of regional and global climatic oscillations on Croatian climate. International Journal of Climatology. https://doi.org/10.1002/joc.2372.

    Article  Google Scholar 

  3. Branković, Č., Güttler, I., & Gajić-Čapka, M. (2013). Evaluating climate change at the Croatian Adriatic from observations and regional climate models’ simulations. Climate Dynamics, 41, 2353–2373.

    Article  Google Scholar 

  4. Bueh, C., & Nakamura, H. (2007). Scandinavian pattern and its climatic impact. Quarterly Journal of the Royal Meteorological Society, 133, 2117–2131.

    Article  Google Scholar 

  5. Buljan, M. (1953). Fluctuation of salinity in the Adriatic. Acta Adriatica, 2(2), 1–64.

    Google Scholar 

  6. Buljan, M., & Zore-Armanda, M. (1976). Oceanographic properties of the Adriatic Sea. Oceanography and Marine Biology Annual Review, 14, 11–98.

    Google Scholar 

  7. Chang, C., & Johnson, N. C. (2015). The continuum of wintertime southern hemisphere atmospheric teleconnection patterns. Journal of Climate. https://doi.org/10.1175/JCLI-D-14-00739.1.

    Article  Google Scholar 

  8. Civitarese, G., Gačić, M., Lipizer, M., & Borzelli, G. L. E. (2010). On the impact of the bimodal oscillating system (BiOS) on the biogeochemistry and biology of the Adriatic and Ionian Seas (Eastern Mediterranean). Biogeosciences, 7, 3987–3997.

    Article  Google Scholar 

  9. Cleveland, W. S. (1979). Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistical Association. https://doi.org/10.2307/2286407.

    Article  Google Scholar 

  10. Dray, S., & Josse, J. (2015). Principal component analysis with missing values: A comparative survey of methods. Plant Ecology. https://doi.org/10.1007/s11258-014-0406-z.

    Article  Google Scholar 

  11. Gačić, M., Borzelli, G. L. E., Civitarese, G., Cardin, V., & Yari, S. (2010). Can internal pro-cesses sustain reversals of the ocean upper circulation? The Ionian Sea example. Geophysical Research Letters. https://doi.org/10.1029/2010gl043216.

    Article  Google Scholar 

  12. Gačić, M., Civitarese, G., Kovačević, V., Ursella, L., Bensi, M., Menna, M., et al. (2014). Extreme winter 2012 in the Adriatic: An example of climatic effect on the BiOS rhythm. Ocean Science. https://doi.org/10.5194/os-10-513-2014.

    Article  Google Scholar 

  13. Grbec, B. (1997). Influence of climatic changes on oceanographic properties of the Adriatic Sea. Acta Adriatica, 38(2), 3–29.

    Google Scholar 

  14. Grbec, B., & Morović, M. (1997). Seasonal thermohaline fluctuations in the middle Adriatic Sea. Il Nuovo Cimento C, 20, 561–576.

    Google Scholar 

  15. Grbec, B., Morović, M., Beg Paklar, G., Kušpilić, G., Matijević, S., Matić, F., et al. (2009). The relationship between the atmospheric variability and productivity in the Adriatic Sea area. Journal of the Marine Biological Association of the UK, 89, 1549–1558.

    Article  Google Scholar 

  16. Grbec, B., Morović, M., Matić, F., Ninčević, Ž., Marasović, I., Vidjak, O., et al. (2015). Climate regime shifts and multi-decadal variability of the Adriatic Sea pelagic ecosystem. Acta Adriatica, 56(1), 47–66.

    Google Scholar 

  17. Grisogono, B., & Belušić, (2009). A review of recent advances in understanding the meso- and microscale properties of the severe Bora wind. Tellus A, 61, 1–16.

    Article  Google Scholar 

  18. Hurrell, J. W. (1995). Decadal trends in the North Atlantic Oscillation—regional temperatures and precipitation. Science, 269, 676–679.

    Article  Google Scholar 

  19. Jacob, J., Petersen, J., Eggert, B., Alias, A., Christensen, O. B., Bouwer, L. M., et al. (2014). EURO-CORDEX: New high-resolution climate change projections for European impact research. Regional Environmental Change, 14, 563–578.

    Article  Google Scholar 

  20. Kaiser, H. F. (1960). The application of electronic computers to factor analysis. Educational and Psychological Measurement, 20, 141–151.

    Article  Google Scholar 

  21. Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., et al. (1996). The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77(3), 437–471.

    Article  Google Scholar 

  22. Kohonen, T. (1982). Self-organized information of topologically correct features maps. Biological Cybernetics, 43, 59–69.

    Article  Google Scholar 

  23. Kohonen, T. (2001). Self-organizing maps, Springer series information science, 3rd (30th ed., p. 501). New York: Springer.

    Google Scholar 

  24. Kohonen, T. (2013). Essentials of the self-organizing map. Neural Networks, 37, 52–65.

    Article  Google Scholar 

  25. Kovač, Ž., Morović, M., & Matić, F. (2014). Uncovering spatial and temporal patterns of Adriatic Sea colour with self-organizing maps. International Journal of Remote Sensing. https://doi.org/10.1080/01431161.2014.885667.

    Article  Google Scholar 

  26. Krichak, S. O., Kishcha, P., & Alpert, P. (2002). Decadal trends of main Eurasian oscillations and the Mediterranean precipitation. Theoretical and Applied Climatology, 72, 29–220.

    Article  Google Scholar 

  27. Liu, Y., & Weisberg, R. H. (2011). A review of self-organizing map applications in meteorology and oceanography, in self-organizing maps: Applications and novel algorithm design. Rijeka: InTech. https://doi.org/10.5772/13146.

    Google Scholar 

  28. Liu, Y., Weisberg, R. H., Lenes, J. M., Zheng, L., Hubbard, K., & Walsh, J. J. (2016). Offshore forcing on the “pressure point” of the West Florida Shelf: Anomalous upwelling and its influence on harmful algal blooms. Journal of Geophysical Research Oceans. https://doi.org/10.1002/2016jc011938.

    Article  Google Scholar 

  29. Liu, Y., Weisberg, R. H., & Mooers, C. N. K. (2006). Performance evaluation of the self-organizing map for feature extraction. Journal of Geophysical Research. https://doi.org/10.1029/2005jc003117.

    Article  Google Scholar 

  30. Lorenz, J. R. (1863). Physikalische Verhältnisse und Vertailung der Organismen im Quarnerischen Golfe. Wien: Hofund Staatsdruckerei.

    Google Scholar 

  31. Luterbacher, J., Liniger, M. A., Menzel, A., Estrella, N., Della-Marta, P. M., Pfister, C., et al. (2007). Exceptional European warmth of autumn 2006 and winter 2007: Historical context, the underlying dynamics, and its phenological impacts. Geophysical: Research Letters. https://doi.org/10.1029/2007GL029951.

    Google Scholar 

  32. Mariotti, A., & Dell’Aquila, A. (2012). Decadal climate variability in the Mediterranean region: Roles of large-scale forcings and regional processes. Climate Dynamics, 38, 1129–1145.

    Article  Google Scholar 

  33. Matić, F., Grbec, B., & Morović, M. (2011). Indications of climate regime shifts in the middle Adriatic Sea. Acta Adriatica, 52, 235–246.

    Google Scholar 

  34. Matić, F., Kovač, Ž., Vilibić, I., Mihanović, H., Morović, M., Grbec, B., et al. (2017). Oscillating Adriatic temperature and salinity regimes mapped using the self-organizing maps method. Continental Shelf Research, 132, 11–18.

    Article  Google Scholar 

  35. Mihanović, H., Vilibić, I., Carniel, S., Tudor, M., Russo, A., Bergamasco, A., et al. (2013). Exceptional dense water formation on the Adriatic shelf in the winter of 2012. Ocean Science, 9, 561–572.

    Article  Google Scholar 

  36. Oddo, P., & Guarnieri, A. (2011). A study of the hydrographic conditions in the Adriatic Sea from numerical modelling and direct observations (2000–2008). Ocean Science, 7, 549–567.

    Article  Google Scholar 

  37. Piccinetti, C., Vrgoč, N., Marčeta, B., & Manfredi, C. (2012). Recent state of demersal resources in the Adriatic Sea. Acta Adriatica Monograph Series, 5, 1–220.

    Google Scholar 

  38. Preisendorfer, W. R. (1988). Principal component analysis in meteorology and oceanography. Amsterdam: Elsevier.

    Google Scholar 

  39. Rencher, A. C. (2002). Methods of multivariate analysis (2nd ed.). New-Jersey: Wiley.

    Google Scholar 

  40. Rodionov, S. N. (2004). A sequential algorithm for testing climate regime shifts. Geophysical Research Letters. https://doi.org/10.1029/2004GL019448.

    Article  Google Scholar 

  41. Sousa, P. M., Trigo, R. M., Barriopedro, D., Soares, P. M. M., & Santos, J. A. (2017). European temperature responses to blocking and ridge regional patterns. Climate Dynamics. https://doi.org/10.1007/s00382-017-3620-2.

    Article  Google Scholar 

  42. Supić, N., Grbec, B., Vilibić, I., & Ivančić, I. (2004). Long-term changes in hydrographic conditions in northern Adriatic and its relationship to hydrological and atmospheric processes. Annales Geophysicae, 22, 733–745.

    Article  Google Scholar 

  43. Supić, N., & Orlić, M. (1992). Annual cycle of sea surface temperature along the east Adriatic coast. Geofizika, 9, 79–97.

    Google Scholar 

  44. Vilibić, I., Čikeš Keč, V., Zorica, B., Šepić, J., Matijević, S., & Džoić, T. (2016). Hydrographic conditions driving sardine and anchovy populations in a land-locked sea. Marine Mediterranean Science, 17, 1–12.

    Article  Google Scholar 

  45. Vilibić, I., Šepić, J., & Proust, N. (2013). Weakening of thermohaline circulation in the Adriatic Sea. Climate Research, 55, 217–225.

    Article  Google Scholar 

  46. Xoplaki, E., Gonzalez-Rouco, J. F., Luterbacher, J., & Wanner, H. (2004). Wet season Mediterranean precipitation variability: Influence of large-scale dynamics and trends. Climate Dynamics. https://doi.org/10.1007/s00382-004-0422-0.

    Article  Google Scholar 

  47. Zore-Armanda, M. (1969). Temperature relations in the Adriatic Sea. Acta Adriatica, 13(5), 1–51.

    Google Scholar 

  48. Zore-Armanda, M., Bone, M., Dadić, V., Morović, M., Ratković, D., Stojanoski, L., et al. (1991). Hydrographic properties of the Adriatic Sea in the period from 1971 through 1983. Acta Adriatica, 32(1), 1–552.

    Google Scholar 

  49. Zveryaev, I. I., & Hannachi, A. B. A. (2017). Interdecadal changes in the links between Mediterranean evaporation and regional atmospheric dynamics during extended cold season. International Journal of Climatology, 37, 1322–1340.

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported in part by Croatian Science Foundation under the Projects IP-2014-09-3606 (MARIPLAN), IP-2014-06-1955 (ADIOS) and by ViLab group (http://www.izor.hr/web/guest/virtual-laboratory). The SOM Toolbox version 2.0 for Matlab was developed by E. Alhoniemi, J. Himberg, J. Parhankangas, and J. Vesanto at the Helsinki University of Technology, Finland, and is available at http://www.cis.hut.fi/projects/somtoolbox.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gordana Beg Paklar.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Grbec, B., Matić, F., Beg Paklar, G. et al. Long-Term Trends, Variability and Extremes of In Situ Sea Surface Temperature Measured Along the Eastern Adriatic Coast and its Relationship to Hemispheric Processes. Pure Appl. Geophys. 175, 4031–4046 (2018). https://doi.org/10.1007/s00024-018-1793-1

Download citation

Keywords

  • Sea surface temperature
  • teleconnection indices
  • self-organizing maps
  • PCA
  • trend
  • long-time series