Skip to main content
Log in

Search for Trends and Periodicities in Inter-hemispheric Sea Surface Temperature Difference

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Understanding the role of coupled solar and internal ocean dynamics on hemispheric climate variability is critical to climate modelling. We have analysed here 165 year long annual northern hemispheric (NH) and southern hemispheric (SH) sea surface temperature (SST) data employing spectral and statistical techniques to identify the imprints of solar and ocean–atmospheric processes, if any. We reconstructed the eigen modes of NH-SST and SH-SST to reveal non-linear oscillations superimposed on the monotonic trend. Our analysis reveals that the first eigen mode of NH-SST and SH-SST representing long-term trend of SST variability accounts for ~ 15–23% variance. Interestingly, these components are matching with first eigen mode (99% variance) of the total solar irradiance (TSI) suggesting possible impact of solar activity on long-term SST variation. Furthermore, spectral analysis of SSA reconstructed signal revealed statistically significant periodicities of ~ 63 ± 5, 22 ± 2, 10 ± 1, 7.6, 6.3, 5.2, 4.7, and 4.2 years in both NH-SST and SH-SST data. The major harmonics centred at ~ 63 ± 5, 22 ± 2, and 10 ± 1 years are similar to solar periodicities and hence may represent solar forcing, while the components peaking at around 7.6, 6.3, 5.2, 4.7, and 4.2 years apparently falls in the frequency bands of El-Nino-Southern Oscillations linked to the oceanic internal processes. Our analyses also suggest evidence for the amplitude modulation of ~ 9–11 and ~ 21–22 year solar cycles, respectively, by 104 and 163 years in northern and southern hemispheric SST data. The absence of the above periodic oscillations in CO2 fails to suggest its role on observed inter-hemispheric SST difference. The cross-plot analysis also revealed strong influence of solar activity on linear trend of NH- and SH-SST in addition to small contribution from CO2. Our study concludes that (1) the long-term trends in northern and southern hemispheric SST variability show considerable synchronicity with cyclic warming and cooling phases and (2) the difference in cyclic forcing and non-linear modulations stemming from solar variability as a possible source of hemispheric SST differences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Blunier, T., & Brook, E. J. (2001). Timing of millennial scale climate change in Antarctica and Greenland during the last glacial period. Science, 291, 109–112.

    Article  Google Scholar 

  • Blunier, T., Chappellaz, J., Schwander, J., Dallenbach, A., Stauffer, B., Stocker, T. F., et al. (1998). Asynchrony of Antarctic and Greenland climate during the last glacial period. Nature, 394, 739–743.

    Article  Google Scholar 

  • Burroughs, W. J. (1992). Weather cycles, real or imaginary?. Cambridge: Cambridge University Press.

    Google Scholar 

  • Charles, C. D., & Fairbanks, R. G. (1992). Evidence from Southern Ocean sediments for the effect of North Atlantic deep-water flux on climate. Nature, 355, 416–419.

    Article  Google Scholar 

  • Charles, C. D., Lynch-Stieglitz, J., Ninneman, U. S., & Fairbanks, R. G. (1996). Climate connections between the hemispheres revealed by deep-sea sediment core/ice core correlations. Earth and Planetary Science Letters, 142, 19–27.

    Article  Google Scholar 

  • Cobb, K. M. (2014). A Southern misfit. Nature Climate Change, 4, 328–329.

    Article  Google Scholar 

  • Enfield, D. B., Mestas-Nunez, A. M., & Trimble, P. J. (2001). The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S. Geophysical Research Letters, 28, 2077–2080. https://doi.org/10.1029/2000GL012745.

    Article  Google Scholar 

  • Friedmann, A., Wang, Y. H., Chiang, J., & Frierson, D. (2013). Interhemispheric temperature asymmetry over the 20th century and in future projections. Journal of Climate, 26, 5419–5433.

    Article  Google Scholar 

  • Ghil, M., & Taricco, C. (1997). Advanced Spectral analysis methods. In G. Cini Castagnoli, & A. Provenzale (Eds.), Past and present variability of the solar-terrestrial system: Measurement, data analysis and theoretical models. Amsterdam: Società Italiana di Fisica, Bologna, and IOS Press.

  • Golyandina, N., Nekrutkin, V., & Zhigljavsky, A. A. (2001). Analysis of time series structure: SSA and related techniques. New York: Chapman and Hall/CRC Monographs on Statistics and Applied Probability, Taylor and Francis.

    Book  Google Scholar 

  • Goosse, H., Masson-Delmotte, V., Renssen, H., Delmotte, M., Fichefet, T., Morgan, V., et al. (2004). A late medieval warm period in the Southern Ocean as a delayed response to external forcing? Geophysical Research Letters, 31(6), L06203. https://doi.org/10.1029/2003gl019140.

    Article  Google Scholar 

  • Haigh, J. D. (1996). The impact of solar variability on climate. Science, 272, 981–984.

    Article  Google Scholar 

  • Hu, F. S., Kaufman, D., Yoneji, S., Nelson, D., Shemesh, A., Huang, Y., et al. (2003). Cyclic variation and solar forcing of Holocene climate in the Alaskan subarctic. Science, 301(5641), 1890–1893.

    Article  Google Scholar 

  • Kennedy, J. J., Rayner, N. A., Smith, R. O., Saunby, M., & Parker, D. E. (2011a). Reassessing biases and other uncertainties in sea-surface temperature observations since 1850 part 1: Measurement and sampling errors. Journal of Geophysical Research, 116, D14103. https://doi.org/10.1029/2010jd015218.

    Article  Google Scholar 

  • Kennedy, J. J., Rayner, N. A., Smith, R. O., Saunby, M., & Parker, D. E. (2011b). Reassessing biases and other uncertainties in sea-surface temperature observations since 1850 part 2: Biases and homogenisation. Journal of Geophysical Research, 116, D14104. https://doi.org/10.1029/2010jd015220.

    Article  Google Scholar 

  • Knudsen, M. F., Seidenkrantz, M. S., Jacobsen, B. H., & Kuijpers, A. (2011). Tracking the Atlantic Multidecadal Oscillation through the last 8,000 years. Nature Communications, 2, 178.

    Article  Google Scholar 

  • Lean, J., & Rind, D. (1998). Climate forcing by changing solar radiation. J. Climate, 11, 3069–3094. https://doi.org/10.1175/1520-0442(1998)011<3069:CFBCSR>2.0.CO;2.

  • Manabe, S., & Stouffer, R. J. (2000). Study of abrupt climate change by the coupled ocean atmosphere model. Quaternary Science Reviews, 19(1–5), 285–299. https://doi.org/10.1016/S0277-3791(99)00066-9.

    Article  Google Scholar 

  • Mann, M. E., Zhang, Z., Rutherford, S., Bradley, R. S., Hughes, M. K., Shindell, D. T., et al. (2009). Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science, 326, 1256–1260.

    Article  Google Scholar 

  • Meehl, G. A., Washington, W. M., Wigley, T. M. L., Arblaster, J. M., & Dai, A. (2003). Solar and greenhouse gas forcing and climate response in the Twentieth Century. Journal of Climate, 16, 426–444.

    Article  Google Scholar 

  • Mikolajewicz, et al. (1998). Modeling the telecommunication between the North Atlantic and North Pacific during the younger Dryas. Nature, 387(6631), 384–387.

    Article  Google Scholar 

  • Minobe, S. (1997). A 50–70 year climatic oscillation over the North Pacific and North America. Geophysical Research Letters, 24(6), 683–686.

    Article  Google Scholar 

  • Neukom, R., Gergis, J., Karoly, D. J., Wanner, H., Curran, M., Elbert, J., et al. (2014). Inter-hemispheric temperature variability over the past millennium. Nature Climate Change, 4, 362–367.

    Article  Google Scholar 

  • Ogurtsov, M. G., Nagovitsyn, Y. A., Kocharov, G. E., & Jungner, H. (2002). Long-period cycles of the Sun’s activity recorded in direct solar data and proxies. Solar Physics, 211(1–2), 371–394.

    Article  Google Scholar 

  • Peristykh, A. N., & Damon, P. E. (2003). Persistence of the Gleissberg 88-year solar cycle over the last ~ 12,000 years: Evidence from cosmogenic isotopes. Journal of Geophysical Research, 108(A1), 1003. https://doi.org/10.1029/2002ja009390.

    Article  Google Scholar 

  • Rayner, N. A., Brohan, P., Parker, D. E., Folland, C. K., Kennedy, J. J., Vanicek, M., et al. (2006). Improved analyses of changes and uncertainties in sea surface temperature measured in situ since the mid-nineteenth century: The HadSST2 data set. Journal of Climate, 19(3), 446–469.

    Article  Google Scholar 

  • Rind, D., Lean, J., & Healy, R. (1999). Simulated time-dependent climate response to solar radiative forcing since 1600. Journal of Geophysical Research, 104, 1973–1990.

    Article  Google Scholar 

  • Scafetta, N. (2012). Multi-scale harmonic model for solar and climate cyclical variation throughout the Holocene based on Jupiter-Saturn tidal frequencies plus the 11-year solar dynamo cycle. Journal of Atmospheric and Solar-Terrestrial Physics, 80, 296–311.

    Article  Google Scholar 

  • Schlesinger, M. E., & Ramankutty, N. (1994). An oscillation in the global climate system of period 65–70 years. Nature, 367(6465), 723–726.

    Article  Google Scholar 

  • Shindell, D., Rind, D., Balachandran, N., Lean, J., & Lonergan, P. (1999). Solar cycle variability, ozone, and climate. Science, 284, 305–308.

    Article  Google Scholar 

  • Shindell, D. T., Schmidt, G. A., Mann, M. E., Rind, D., & Waple, A. (2001). Solar forcing of regional climate change during the Maunder minimum. Science, 294, 2149–2152.

    Article  Google Scholar 

  • Steig, E. J., & Alley, R. B. (2002). Phase relationships between Antarctic and Greenland climate records. Annals of Glaciology, 35, 451–456.

    Article  Google Scholar 

  • Steig, E. J., Brook, E. J., White, J. W. C., Sucher, C. M., Bender, M. L., Lehman, S. J., et al. (1998). Synchronous climate changes in Antarctica and the North Atlantic. Science, 282(92–95), 1998.

    Google Scholar 

  • Stouffer, R. J., Manabe, S., & Bryan, K. (1989). Interhemispheric asymmetry in climate response to gradual increase of atmospheric CO2. Nature, 342, 660–662.

    Article  Google Scholar 

  • Stuiver, M., & Braziunas, T. F. (1987). Tree cellulose 13C/12C isotope ratios and climatic change. Nature, 328, 58–60.

    Article  Google Scholar 

  • Thompson, D. W., Wallace, J. M., Kennedy, J. J., & Phil, D. J. (2010). An abrupt drop in Northern Hemisphere sea surface temperature around 1970. Nature, 467(7314), 444–447.

    Article  Google Scholar 

  • Tiwari, R. K. (2005). Geo spectroscopy. Capital-Publishing Company ISBN: 81-85589-17-8.

  • Tiwari, R. K., & Rajesh, R. (2014). Imprint of long-term solar signal in groundwater recharge fluctuation rates from Northwest China. Geophysical Research Letters, 41(9), 3103–3109.

    Article  Google Scholar 

  • Tiwari, R. K., Rajesh, R., & Padmavathi, B. (2016). Evidence of higher-order solar periodicities in china temperature record. Pure and Applied Geophysics, 173(7), 2511–2520.

    Article  Google Scholar 

  • Turner, J., Lu, H., White, I., King, J. C., Phillips, T., Hosking, J. S., et al. (2016). Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature, 535(7612), 411–415.

    Article  Google Scholar 

  • Wang, Y.-M., Lean, J. L., & Sheeley, N. R. (2005). Modeling the Sun’s magnetic field and irradiance since 1713. Astrophysical Journal, 625, 522–538.

    Article  Google Scholar 

  • Weber, S. L., Crowley, T. J., & van der Schrier, G. (2004). Solar irradiance forcing of centennial climate variability during the Holocene. Climate Dynamics, 22(5), 539–553.

    Article  Google Scholar 

  • Xu, Y., & Ramanathan, V. (2012). Latitudinally asymmetric response of global surface temperature: Implications for regional climate change. Geophysical Research Letters, 39(13), L13706.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Director, CSIR-NGRI for his permission to publish this work. We are also thankful to Met Office Hadley Centre’s for SST data, SILSO data/image, Royal Observatory of Belgium, Brussels for Sunspot Number data, Wang et al. (2005) for TSI data, and Mann et al. (2009) for PDO and AMO data. First author is thankful to CSIR for granting Research Associate fellowship. R.K.T is gratful to DAE for awarding Rajaramanna Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Rajesh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 65 kb)

Appendix: Amplitude Modulation (AM)

Appendix: Amplitude Modulation (AM)

In amplitude modulation (AM), the information signal (here after signal) modifies the amplitude of the carrier wave. The instantaneous amplitude of the carrier changes in accordance with the amplitude and frequency variations of the modulating signal. In the case of a simple single frequency sine wave signal \(\vartheta_{\text{m}} = a_{\text{m}} \sin 2\pi f_{\text{m}} t\) modulating a higher frequency sine wave carrier \(\vartheta_{\text{c}} = a_{\text{c}} \sin 2\pi f_{\text{c}} t\), the resulting signal amplitude (\(\vartheta\)) is given by

$$\vartheta = a_{\text{c}} \sin 2\pi f_{\text{m}} t + \left( {a_{\text{m}} \sin 2\pi f_{\text{m}} t} \right)\left( {\sin 2\pi f_{\text{c}} t} \right)$$
(3)

where \(\vartheta_{\text{m}} , \vartheta_{\text{c}}\) are the instantaneous amplitudes, \(a_{\text{m}} , a_{\text{c}}\) are the peak amplitudes, and \(f_{\text{m}} , f_{\text{c}}\) are the frequencies of modulating and carrier signals, respectively. Using the trigonometric equalities, the above equation can be re-written as follows:

$$\vartheta = a_{\text{c}} \sin 2\pi f_{\text{c}} t + \frac{{a_{\text{m}} }}{2}\left( {\cos 2\pi t\left( {f_{\text{c}} - f_{\text{m}} } \right) - \frac{{a_{\text{m}} }}{2}\cos 2\pi t\left( {f_{\text{c}} + f_{\text{m}} } \right)} \right).$$
(4)

The term \(a_{\text{c}} \sin 2\pi f_{\text{c}} t, \frac{{a_{\text{m}} }}{2}\left( {\cos 2\pi t(f_{\text{c}} - f_{\text{m}} } \right)\;{\text{and}}\; \frac{{a_{\text{m}} }}{2}\left( { \cos 2\pi t(f_{\text{c}} + f_{\text{m}} } \right)\) represents the original carrier, lower side band (LSB), and upper side band (USB) frequencies, respectively. The pictorial representation of modulated signal (\(\vartheta\)) in the frequency domain is shown in Fig. 15.

Fig. 15
figure 15

Spectral content of amplitude modulated signal represented by Eq. (4)

We have estimated the phase and frequency contents of the modulated component ‘y’ identified in the SSA reconstructed Eigen modes to compute fc and fm. Then, we have used matlab function z = amdemod(y, fc, fm) to demodulate the amplitude modulated signal y to recover the signal. Here, fc and fm must satisfy fm > 2(fc + BW), where BW is the bandwidth of the original signal that was modulated.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajesh, R., Tiwari, R.K. Search for Trends and Periodicities in Inter-hemispheric Sea Surface Temperature Difference. Pure Appl. Geophys. 175, 2381–2394 (2018). https://doi.org/10.1007/s00024-018-1791-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-018-1791-3

Keywords

Navigation