Pure and Applied Geophysics

, Volume 175, Issue 6, pp 2381–2394 | Cite as

Search for Trends and Periodicities in Inter-hemispheric Sea Surface Temperature Difference

  • R. RajeshEmail author
  • R. K. Tiwari


Understanding the role of coupled solar and internal ocean dynamics on hemispheric climate variability is critical to climate modelling. We have analysed here 165 year long annual northern hemispheric (NH) and southern hemispheric (SH) sea surface temperature (SST) data employing spectral and statistical techniques to identify the imprints of solar and ocean–atmospheric processes, if any. We reconstructed the eigen modes of NH-SST and SH-SST to reveal non-linear oscillations superimposed on the monotonic trend. Our analysis reveals that the first eigen mode of NH-SST and SH-SST representing long-term trend of SST variability accounts for ~ 15–23% variance. Interestingly, these components are matching with first eigen mode (99% variance) of the total solar irradiance (TSI) suggesting possible impact of solar activity on long-term SST variation. Furthermore, spectral analysis of SSA reconstructed signal revealed statistically significant periodicities of ~ 63 ± 5, 22 ± 2, 10 ± 1, 7.6, 6.3, 5.2, 4.7, and 4.2 years in both NH-SST and SH-SST data. The major harmonics centred at ~ 63 ± 5, 22 ± 2, and 10 ± 1 years are similar to solar periodicities and hence may represent solar forcing, while the components peaking at around 7.6, 6.3, 5.2, 4.7, and 4.2 years apparently falls in the frequency bands of El-Nino-Southern Oscillations linked to the oceanic internal processes. Our analyses also suggest evidence for the amplitude modulation of ~ 9–11 and ~ 21–22 year solar cycles, respectively, by 104 and 163 years in northern and southern hemispheric SST data. The absence of the above periodic oscillations in CO2 fails to suggest its role on observed inter-hemispheric SST difference. The cross-plot analysis also revealed strong influence of solar activity on linear trend of NH- and SH-SST in addition to small contribution from CO2. Our study concludes that (1) the long-term trends in northern and southern hemispheric SST variability show considerable synchronicity with cyclic warming and cooling phases and (2) the difference in cyclic forcing and non-linear modulations stemming from solar variability as a possible source of hemispheric SST differences.


SST trend solar forcing ocean–atmospheric circulations modulations 



We thank Director, CSIR-NGRI for his permission to publish this work. We are also thankful to Met Office Hadley Centre’s for SST data, SILSO data/image, Royal Observatory of Belgium, Brussels for Sunspot Number data, Wang et al. (2005) for TSI data, and Mann et al. (2009) for PDO and AMO data. First author is thankful to CSIR for granting Research Associate fellowship. R.K.T is gratful to DAE for awarding Rajaramanna Fellowship.

Supplementary material

24_2018_1791_MOESM1_ESM.docx (65 kb)
Supplementary material 1 (DOCX 65 kb)


  1. Blunier, T., & Brook, E. J. (2001). Timing of millennial scale climate change in Antarctica and Greenland during the last glacial period. Science, 291, 109–112.CrossRefGoogle Scholar
  2. Blunier, T., Chappellaz, J., Schwander, J., Dallenbach, A., Stauffer, B., Stocker, T. F., et al. (1998). Asynchrony of Antarctic and Greenland climate during the last glacial period. Nature, 394, 739–743.CrossRefGoogle Scholar
  3. Burroughs, W. J. (1992). Weather cycles, real or imaginary?. Cambridge: Cambridge University Press.Google Scholar
  4. Charles, C. D., & Fairbanks, R. G. (1992). Evidence from Southern Ocean sediments for the effect of North Atlantic deep-water flux on climate. Nature, 355, 416–419.CrossRefGoogle Scholar
  5. Charles, C. D., Lynch-Stieglitz, J., Ninneman, U. S., & Fairbanks, R. G. (1996). Climate connections between the hemispheres revealed by deep-sea sediment core/ice core correlations. Earth and Planetary Science Letters, 142, 19–27.CrossRefGoogle Scholar
  6. Cobb, K. M. (2014). A Southern misfit. Nature Climate Change, 4, 328–329.CrossRefGoogle Scholar
  7. Enfield, D. B., Mestas-Nunez, A. M., & Trimble, P. J. (2001). The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S. Geophysical Research Letters, 28, 2077–2080. Scholar
  8. Friedmann, A., Wang, Y. H., Chiang, J., & Frierson, D. (2013). Interhemispheric temperature asymmetry over the 20th century and in future projections. Journal of Climate, 26, 5419–5433.CrossRefGoogle Scholar
  9. Ghil, M., & Taricco, C. (1997). Advanced Spectral analysis methods. In G. Cini Castagnoli, & A. Provenzale (Eds.), Past and present variability of the solar-terrestrial system: Measurement, data analysis and theoretical models. Amsterdam: Società Italiana di Fisica, Bologna, and IOS Press.Google Scholar
  10. Golyandina, N., Nekrutkin, V., & Zhigljavsky, A. A. (2001). Analysis of time series structure: SSA and related techniques. New York: Chapman and Hall/CRC Monographs on Statistics and Applied Probability, Taylor and Francis.CrossRefGoogle Scholar
  11. Goosse, H., Masson-Delmotte, V., Renssen, H., Delmotte, M., Fichefet, T., Morgan, V., et al. (2004). A late medieval warm period in the Southern Ocean as a delayed response to external forcing? Geophysical Research Letters, 31(6), L06203. Scholar
  12. Haigh, J. D. (1996). The impact of solar variability on climate. Science, 272, 981–984.CrossRefGoogle Scholar
  13. Hu, F. S., Kaufman, D., Yoneji, S., Nelson, D., Shemesh, A., Huang, Y., et al. (2003). Cyclic variation and solar forcing of Holocene climate in the Alaskan subarctic. Science, 301(5641), 1890–1893.CrossRefGoogle Scholar
  14. Kennedy, J. J., Rayner, N. A., Smith, R. O., Saunby, M., & Parker, D. E. (2011a). Reassessing biases and other uncertainties in sea-surface temperature observations since 1850 part 1: Measurement and sampling errors. Journal of Geophysical Research, 116, D14103. Scholar
  15. Kennedy, J. J., Rayner, N. A., Smith, R. O., Saunby, M., & Parker, D. E. (2011b). Reassessing biases and other uncertainties in sea-surface temperature observations since 1850 part 2: Biases and homogenisation. Journal of Geophysical Research, 116, D14104. Scholar
  16. Knudsen, M. F., Seidenkrantz, M. S., Jacobsen, B. H., & Kuijpers, A. (2011). Tracking the Atlantic Multidecadal Oscillation through the last 8,000 years. Nature Communications, 2, 178.CrossRefGoogle Scholar
  17. Lean, J., & Rind, D. (1998). Climate forcing by changing solar radiation. J. Climate, 11, 3069–3094.<3069:CFBCSR>2.0.CO;2.Google Scholar
  18. Manabe, S., & Stouffer, R. J. (2000). Study of abrupt climate change by the coupled ocean atmosphere model. Quaternary Science Reviews, 19(1–5), 285–299. Scholar
  19. Mann, M. E., Zhang, Z., Rutherford, S., Bradley, R. S., Hughes, M. K., Shindell, D. T., et al. (2009). Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science, 326, 1256–1260.CrossRefGoogle Scholar
  20. Meehl, G. A., Washington, W. M., Wigley, T. M. L., Arblaster, J. M., & Dai, A. (2003). Solar and greenhouse gas forcing and climate response in the Twentieth Century. Journal of Climate, 16, 426–444.CrossRefGoogle Scholar
  21. Mikolajewicz, et al. (1998). Modeling the telecommunication between the North Atlantic and North Pacific during the younger Dryas. Nature, 387(6631), 384–387.CrossRefGoogle Scholar
  22. Minobe, S. (1997). A 50–70 year climatic oscillation over the North Pacific and North America. Geophysical Research Letters, 24(6), 683–686.CrossRefGoogle Scholar
  23. Neukom, R., Gergis, J., Karoly, D. J., Wanner, H., Curran, M., Elbert, J., et al. (2014). Inter-hemispheric temperature variability over the past millennium. Nature Climate Change, 4, 362–367.CrossRefGoogle Scholar
  24. Ogurtsov, M. G., Nagovitsyn, Y. A., Kocharov, G. E., & Jungner, H. (2002). Long-period cycles of the Sun’s activity recorded in direct solar data and proxies. Solar Physics, 211(1–2), 371–394.CrossRefGoogle Scholar
  25. Peristykh, A. N., & Damon, P. E. (2003). Persistence of the Gleissberg 88-year solar cycle over the last ~ 12,000 years: Evidence from cosmogenic isotopes. Journal of Geophysical Research, 108(A1), 1003. Scholar
  26. Rayner, N. A., Brohan, P., Parker, D. E., Folland, C. K., Kennedy, J. J., Vanicek, M., et al. (2006). Improved analyses of changes and uncertainties in sea surface temperature measured in situ since the mid-nineteenth century: The HadSST2 data set. Journal of Climate, 19(3), 446–469.CrossRefGoogle Scholar
  27. Rind, D., Lean, J., & Healy, R. (1999). Simulated time-dependent climate response to solar radiative forcing since 1600. Journal of Geophysical Research, 104, 1973–1990.CrossRefGoogle Scholar
  28. Scafetta, N. (2012). Multi-scale harmonic model for solar and climate cyclical variation throughout the Holocene based on Jupiter-Saturn tidal frequencies plus the 11-year solar dynamo cycle. Journal of Atmospheric and Solar-Terrestrial Physics, 80, 296–311.CrossRefGoogle Scholar
  29. Schlesinger, M. E., & Ramankutty, N. (1994). An oscillation in the global climate system of period 65–70 years. Nature, 367(6465), 723–726.CrossRefGoogle Scholar
  30. Shindell, D., Rind, D., Balachandran, N., Lean, J., & Lonergan, P. (1999). Solar cycle variability, ozone, and climate. Science, 284, 305–308.CrossRefGoogle Scholar
  31. Shindell, D. T., Schmidt, G. A., Mann, M. E., Rind, D., & Waple, A. (2001). Solar forcing of regional climate change during the Maunder minimum. Science, 294, 2149–2152.CrossRefGoogle Scholar
  32. Steig, E. J., & Alley, R. B. (2002). Phase relationships between Antarctic and Greenland climate records. Annals of Glaciology, 35, 451–456.CrossRefGoogle Scholar
  33. Steig, E. J., Brook, E. J., White, J. W. C., Sucher, C. M., Bender, M. L., Lehman, S. J., et al. (1998). Synchronous climate changes in Antarctica and the North Atlantic. Science, 282(92–95), 1998.Google Scholar
  34. Stouffer, R. J., Manabe, S., & Bryan, K. (1989). Interhemispheric asymmetry in climate response to gradual increase of atmospheric CO2. Nature, 342, 660–662.CrossRefGoogle Scholar
  35. Stuiver, M., & Braziunas, T. F. (1987). Tree cellulose 13C/12C isotope ratios and climatic change. Nature, 328, 58–60.CrossRefGoogle Scholar
  36. Thompson, D. W., Wallace, J. M., Kennedy, J. J., & Phil, D. J. (2010). An abrupt drop in Northern Hemisphere sea surface temperature around 1970. Nature, 467(7314), 444–447.CrossRefGoogle Scholar
  37. Tiwari, R. K. (2005). Geo spectroscopy. Capital-Publishing Company ISBN: 81-85589-17-8.Google Scholar
  38. Tiwari, R. K., & Rajesh, R. (2014). Imprint of long-term solar signal in groundwater recharge fluctuation rates from Northwest China. Geophysical Research Letters, 41(9), 3103–3109.CrossRefGoogle Scholar
  39. Tiwari, R. K., Rajesh, R., & Padmavathi, B. (2016). Evidence of higher-order solar periodicities in china temperature record. Pure and Applied Geophysics, 173(7), 2511–2520.CrossRefGoogle Scholar
  40. Turner, J., Lu, H., White, I., King, J. C., Phillips, T., Hosking, J. S., et al. (2016). Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature, 535(7612), 411–415.CrossRefGoogle Scholar
  41. Wang, Y.-M., Lean, J. L., & Sheeley, N. R. (2005). Modeling the Sun’s magnetic field and irradiance since 1713. Astrophysical Journal, 625, 522–538.CrossRefGoogle Scholar
  42. Weber, S. L., Crowley, T. J., & van der Schrier, G. (2004). Solar irradiance forcing of centennial climate variability during the Holocene. Climate Dynamics, 22(5), 539–553.CrossRefGoogle Scholar
  43. Xu, Y., & Ramanathan, V. (2012). Latitudinally asymmetric response of global surface temperature: Implications for regional climate change. Geophysical Research Letters, 39(13), L13706.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CSIR-NGRIHyderabadIndia

Personalised recommendations