Arnott, W. P., Hamasha, K., Moosmuller, H., Sheridan, P. J., & Ogren, J. A. (2005). Towards aerosol light-absorption measurements with a 7-wavelength aethalometer: Evaluation with a photoacoustic instrument and 3-wavelength nephelometer. Aerosol Science and Technology, 39(1), 17–29.
Article
Google Scholar
Bond, T. C., Anderson, T. L., & Campbell, D. (1999). Calibration and intercomparison of filter-based measurements of visible light absorption by aerosols. Aerosol Science and Technology, 30(6), 582–600.
Article
Google Scholar
Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., et al. (2013). Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research-Atmospheres, 118(11), 5380–5552.
Article
Google Scholar
Brady, J. M., Stokes, M. D., Bonnardel, J., & Bertram, T. H. (2016). Characterization of a quadrotor unmanned aircraft system for aerosol-particle-concentration measurements. Environmental Science and Technology, 50(3), 1376–1383.
Article
Google Scholar
Chan, C. Y., Xu, X. D., Li, Y. S., Wong, K. H., Ding, G. A., Chan, L. Y., et al. (2005). Characteristics of vertical profiles and sources of pm2.5, pm10 and carbonaceous species in Beijing. Atmospheric Environment, 39(28), 5113–5124.
Article
Google Scholar
Chang, K., Rammos, P., Wilkerson, S. A., Bundy, M., & Gadsden, S. A. (2016). Lipo battery energy studies for improved flight performance of unmanned aerial systems. In Conference on unmanned systems technology XVIII, volume 9837 of Proceedings of SPIE, BELLINGHAM. Spie-Int Soc Optical Engineering.
Chilinski, M. T., Markowicz, K. M., & Markowicz, J. (2016). Observation of vertical variability of black carbon concentration in lower troposphere on campaigns in poland. Atmospheric Environment, 137, 155–170.
Article
Google Scholar
Cook, J., & Highwood, E. J. (2004). Climate response to tropospheric absorbing aerosols in an intermediate general-circulation model. Quarterly Journal of the Royal Meteorological Society, 130(596), 175–191.
Article
Google Scholar
Ferrero, L., Cappelletti, D., Busetto, M., Mazzola, M., Lupi, A., Lanconelli, C., Becagli, S., Traversi, R., Caiazzo, L., Giardi, F., Moroni, B., Crocchianti, S., Fierz, M., Močnik, G., Sangiorgi, G., Perrone, M. G., Maturilli, M., Vitale, V., Udisti, R., & Bolzacchini, E. (2016). Vertical profiles of aerosol and black carbon in the arctic: a seasonal phenomenology along 2 years (2011–2012) of field campaigns. Atmospheric Chemistry and Physics, 16(19):12601–12629. https://www.atmos-chem-phys.net/16/12601/2016/.
Ferrero, L., Castelli, M., Ferrini, B. S., Moscatelli, M., Perrone, M. G., Sangiorgi, G., et al. (2014). Impact of black carbon aerosol over italian basin valleys: High-resolution measurements along vertical profiles, radiative forcing and heating rate. Atmospheric Chemistry and Physics, 14(18), 9640–9663.
Article
Google Scholar
Hess, M., Koepke, P., & Schult, I. (1998). Optical properties of aerosols and clouds: The software package opac. Bulletin of the American Meteorological Society, 79(5), 831–844.
Article
Google Scholar
Holben, B. N., Eck, T. F., Slutsker, I., Tanre, D., Buis, J. P., Setzer, A., et al. (1998). Aeronet—a federated instrument network and data archive for aerosol characterization. Remote Sensing of Environment, 66(1), 1–16.
Article
Google Scholar
Holnicki, P., Kałuszko, A., Nahorski, Z., Stankiewicz, K., & Trapp, W. (2017). Air quality modeling for warsaw agglomeration. Archives of Environmental Protection, 43(1), 48–64.
Article
Google Scholar
Horvath, H. (1993). Atmospheric light-absorption—a review. Atmospheric Environment Part A General Topics, 27(3), 293–317.
Article
Google Scholar
IPCC (2013). Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge. http://www.climatechange2013.org.
Koch, D., & Del Genio, A. D. (2010). Black carbon semi-direct effects on cloud cover: Review and synthesis. Atmospheric Chemistry and Physics, 10(16), 7685–7696.
Article
Google Scholar
Kupiszewski, P., Leck, C., Tjernström, M., Sjogren, S., Sedlar, J., Graus, M., Müller, M., Brooks, B., Swietlicki, E., Norris, S., & Hansel, A. (2013). Vertical profiling of aerosol particles and trace gases over the central arctic ocean during summer. Atmospheric Chemistry and Physics, 13(24):12405–12431. https://www.atmos-chem-phys.net/13/12405/2013/.
Loeb, N. G., Wielicki, B. A., Su, W. Y., Loukachine, K., Sun, W. B., Wong, T., et al. (2007). Multi-instrument comparison of top-of-atmosphere reflected solar radiation. Journal of Climate, 20(3), 575–591.
Article
Google Scholar
Luo, B., Meng, Q. H., Wang, J. Y., & Ma, S. G. (2016). Simulate the aerodynamic olfactory effects of gas-sensitive uavs: A numerical model and its parallel implementation. Advances in Engineering Software, 102, 123–133.
Article
Google Scholar
Lv, L. H., Zhang, T. S., Liu, C., Dong, Y. S., Chen, Z. Y., Fan, G. Q., Liu, Y., & Liu, W. Q. (2015). Atmospheric aerosols detection research with a dual field of view lidar. Journal of Spectroscopy, 2015(2015), 459460. https://doi.org/10.1155/2015/459460.
Article
Google Scholar
Madonna, F., Amato, F., Hey, J. V., & Pappalardo, G. (2015). Ceilometer aerosol profiling versus raman lidar in the frame of the interact campaign of actris. Atmospheric Measurement Techniques, 8(5), 2207–2223.
Article
Google Scholar
Markowicz, K., Ritter, C., Lisok, J., Makuch, P., Stachlewska, I., Cappelletti, D., Mazzola, M., & Chilinski, M. (2017). Vertical variability of aerosol single-scattering albedo and equivalent black carbon concentration based on in-situ and remote sensing techniques during the iarea campaigns in ny-Ålesund. Atmospheric Environment, 164(Supplement C):431–447. http://www.sciencedirect.com/science/article/pii/S1352231017303953.
Matthias, V., Balis, D., Bosenberg, J., Eixmann, R., Iarlori, M., Komguem, L., et al. (2004). Vertical aerosol distribution over europe: Statistical analysis of raman lidar data from 10 European aerosol research lidar network (earlinet) stations. Journal of Geophysical Research Atmospheres, 109(D18), 12.
Article
Google Scholar
McMurry, P. H. (2000). A review of atmospheric aerosol measurements. Atmospheric Environment, 34(12–14), 1959–1999.
Article
Google Scholar
Morawska, L., Thomas, S., Gilbert, D., Greenaway, C., & Rijnders, E. (1999). A study of the horizontal and vertical profile of submicrometer particles in relation to a busy road. Atmospheric Environment, 33(8), 1261–1274.
Article
Google Scholar
Myhre, G., & Samset, B. H. (2015). Standard climate models radiation codes underestimate black carbon radiative forcing. Atmospheric Chemistry and Physics, 15(5), 2883–2888.
Article
Google Scholar
Nakayama, T., Suzuki, H., Kagamitani, S., Ikeda, Y., Uchiyama, A., & Matsumi, Y. (2015). Characterization of a three wavelength photoacoustic soot spectrometer (pass-3) and a photoacoustic extinctiometer (pax). Journal of the Meteorological Society of Japan, 93(2), 285–308.
Article
Google Scholar
Nash, J., Oakley, T., Voemel, H., & Wei, L. (2010). World meteorological organization instruments and observing methods report no. 107. http://www.wmo.int/pages/prog/www/IMOP/publications/IOM-107_Yangjiang.pdf.
Nilsson, E. D., Rannik, U., Kulmala, M., Buzorius, G., & O’Dowd, C. D. (2001). Effects of continental boundary layer evolution, convection, turbulence and entrainment, on aerosol formation. Tellus Series B Chemical and Physical Meteorology, 53(4), 441–461.
Article
Google Scholar
Pixhawk (2017). Pixhawk autopilot firmware parameter reference. https://pixhawk.org/firmware/parameters.
Ramanathan, V., Crutzen, P. J., Lelieveld, J., Mitra, A. P., Althausen, D., Anderson, J., et al. (2001). Indian ocean experiment: An integrated analysis of the climate forcing and effects of the great indo-asian haze. Journal of Geophysical Research Atmospheres, 106(D22), 28371–28398.
Article
Google Scholar
Samset, B. H., & Myhre, G. (2011). Vertical dependence of black carbon, sulphate and biomass burning aerosol radiative forcing. Geophysical Research Letters, 38, 5.
Article
Google Scholar
Samset, B. H., Myhre, G., Schulz, M., Balkanski, Y., Bauer, S., Berntsen, T. K., et al. (2013). Black carbon vertical profiles strongly affect its radiative forcing uncertainty. Atmospheric Chemistry and Physics, 13(5), 2423–2434.
Article
Google Scholar
Schwarz, J. P., Spackman, J. R., Gao, R. S., Watts, L. A., Stier, P., Schulz, M., Davis, S. M., Wofsy, S. C., & Fahey, D. W. (2010). Global-scale black carbon profiles observed in the remote atmosphere and compared to models. Geophysical Research Letters, 37(18), L18812. http://dx.doi.org/10.1029/2010GL044372.
Sokol, P., Stachlewska, I. S., Ungureanu, I., & Stefan, S. (2014). Evaluation of the boundary layer morning transition using the cl-31 ceilometer signals. Acta Geophysica, 62(2), 367–380.
Article
Google Scholar
Spackman, J. R., Gao, R. S., Neff, W. D., Schwarz, J. P., Watts, L. A., Fahey, D. W., Holloway, J. S., Ryerson, T. B., Peischl, J., & Brock, C. A. (2010). Aircraft observations of enhancement and depletion of black carbon mass in the springtime arctic. Atmospheric Chemistry and Physics, 10(19):9667–9680. https://www.atmos-chem-phys.net/10/9667/2010/.
Vardoulakis, S., Fisher, B. E. A., Pericleous, K., & Gonzalez-Flesca, N. (2003). Modelling air quality in street canyons: A review. Atmospheric Environment, 37(2), 155–182.
Article
Google Scholar
Wandinger, U., & Ansmann, A. (2002). Experimental determination of the lidar overlap profile with raman lidar. Applied Optics, 41(3), 511–514.
Article
Google Scholar
Welton, E. J., Voss, K. J., Gordon, H. R., Maring, H., Smirnov, A., Holben, B., et al. (2000). Ground-based lidar measurements of aerosols during ace-2: Instrument description, results, and comparisons with other ground-based and airborne measurements. Tellus Series B Chemical and Physical Meteorology, 52(2), 636–651.
Article
Google Scholar
Welton, E. J., Voss, K. J., Quinn, P. K., Flatau, P. J., Markowicz, K., Campbell, J. R., et al. (2002). Measurements of aerosol vertical profiles and optical properties during indoex 1999 using micropulse lidars. Journal of Geophysical Research Atmospheres, 107(D19), 22.
Article
Google Scholar
Wiedensohler, A., Birmili, W., Nowak, A., Sonntag, A., Weinhold, K., Merkel, M., et al. (2012). Mobility particle size spectrometers: Harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions. Atmospheric Measurement Techniques, 5(3), 657–685.
Article
Google Scholar
Zarzycki, C. M., & Bond, T. C. (2010). How much can the vertical distribution of black carbon affect its global direct radiative forcing? Geophysical Research Letters, 37, 6.
Article
Google Scholar
Zawadzka, O., Markowicz, K. M., Pietruczuk, A., Zielinski, T., & Jaroslawski, J. (2013). Impact of urban pollution emitted in warsaw on aerosol properties. Atmospheric Environment, 69, 15–28.
Article
Google Scholar
Zieger, P., Weingartner, E., Henzing, J., Moerman, M., de Leeuw, G., Mikkila, J., et al. (2011). Comparison of ambient aerosol extinction coefficients obtained from in-situ, max-doas and lidar measurements at cabauw. Atmospheric Chemistry and Physics, 11(6), 2603–2624.
Article
Google Scholar