Pure and Applied Geophysics

, Volume 175, Issue 6, pp 2153–2165 | Cite as

Three-Dimensional Electrical Resistivity Image of the Volcanic Arc in Northern Chile—An Appraisal of Early Magnetotelluric Data

  • Christine Kühn
  • Heinrich Brasse
  • Gerhard Schwarz


Magnetotelluric investigations were carried out in the late 1980s across all morphological units of the South American subduction zone with the aim to observe lithosphere structures and subduction-induced processes in northern Chile, southwestern Bolivia, and northwestern Argentina at ~ 22°S. Earlier two-dimensional forward modeling yielded a complex picture of the lower crust and upper mantle, with strong variations between the individual morphological units as well as between forearc and backarc. The principal result was a highly conductive zone beneath the volcanic arc of the Western Cordillera starting at ~ 25 km depth. Goal of this work is to extend the existing 2-D results using three-dimensional modeling techniques at least for the volcanic arc and forearc region between 22°S and 23°S in Northern Chile. Dimensionality analysis indicates strong 3-D effects along the volcanic arc at the transition zone to the Altiplano, in the Preandean Depression and around the Precordillera Fault System at ~ 22°S. In general, the new 3-D models corroborate previous findings, but also enable a clearer image of lateral resistivity variations. The magmatic arc conductor emerges now as a trench-parallel, N–S elongated structure slightly shifted to the east of the volcanic front. The forearc appears highly resistive except of some conductive structures associated with younger sedimentary infill or young magmatic record beneath the Precordillera and Preandean Depression. The most prominent conductor in the whole Central Andes beneath the Altiplano and Puna is also modeled here; it is, however, outside the station array and thus poorly resolved in this study.


Magnetotellurics 3-D inversion Volcanic arc Central Andes Subduction zones 



We are grateful to Gary Egbert, Anna Kelbert, and Naser Meqbel for providing the freely available ModEM software and Naser Meqbel for his grid and data editor (3D\(\_\)Grid academic). Comments by two anonymous reviewers helped to improve the manuscript.


  1. Allmendinger, R. W., Smalley, R., Bevis, M., Caprio, H., & Brooks, B. (2005). Bending the Bolivian orocline in real time. Geology, 33(11), 905–908.CrossRefGoogle Scholar
  2. Araya Vargas, J., & Ritter, O. (2016). Source effects in midlatitude geomagnetic transfer functions. Geophysical Journal International, 204.
  3. Banaszak, M. (2014). Differentiation regimes in the Central Andean magma systems: Case studies of Taapaca and Parinacota volcanoes, Northern Chile. PhD thesis, Univ. Göttingen.Google Scholar
  4. Brändlein, D. (2013). Geo-electromagnetic monitoring of the Andean Subduction Zone in Northern Chile. PhD thesis, Freie Univ. Berlin.Google Scholar
  5. Brasse, H., Lezaeta, P., Rath, V., Schwalenberg, K., Soyer, W., & Haak, V. (2002). The Bolivian Altiplano conductivity anomaly. Journal of Geophysical Research, 107(B5).
  6. Brasse, H., & Eydam, D. (2008). Electrical conductivity beneath the Bolivian Orocline and its relation to subduction processes at the South American continental margin. Journal of Geophysical Research, 113, B07109.
  7. Brasse, H., Kapinos, G., Li, Y., Mütschard, L., Soyer, W., & Eydam, D. (2009). Structural electrical anisotropy in the crust at the South-Central Chilean continental margin as inferred from geomagnetic transfer functions. Physics of the Earth and Planetary Interiors, 173.
  8. Brasse, H. (2011). Electromagnetic images of the South and Central American subduction zones. In: E. Petrovsky, E. Herrero-Bervera, T. Harinarayana, & D. Ivers (Eds.), The earth’s magnetic interior (pp. 43–81). IAGA Special Sopron Book Series 1. Berlin: Springer.Google Scholar
  9. Caldwell, T. G., Bibby, H. M., & Brown, C. (2004). The magnetotelluric phase tensor. Geophysical Journal International, 158, 457–469.CrossRefGoogle Scholar
  10. Constable, S. (2015). Geomagnetic induction studies, geophysics. In G. Schubert (Ed.), Treatise on geophysics (pp. 219–254). Amsterdam: Elsevier.CrossRefGoogle Scholar
  11. Comeau, M. J., Unsworth, M. J., Ticona, F., & Sunagua, M. (2015). Magnetotelluric images of magma distribution beneath Volcán Uturuncu, Bolivia: Implications for magma dynamics. Geology, 43(3).
  12. De Silva, S. L. (1989). Altiplano-Puna volcanic complex of the central Andes. Geology, 17(12), 1102–1106.CrossRefGoogle Scholar
  13. De Silva, S. L., Self, S., Francis, P. W., Drake, R. E., & Ramirez, R. C. (1994). Effusive silicic volcanism in the Central Andes: The Chao dacite and other young lavas of the Altiplano Puna Volcanic Complex. Journal of Geophysical Research, 99(B9), 17805–17825.CrossRefGoogle Scholar
  14. Del Potro, R., Díez, M., Blundy, J., Camacho, A. G., & Gottsmann, J. (2013). Diapiric ascent of silicic magma beneath the Bolivian Altiplano. Journal of Geophysical Research, 40(10), 2044–2048.CrossRefGoogle Scholar
  15. Díaz, D., Brasse, H., & Ticona, F. (2012). Conductivity distribution beneath Lascar volcano (Northern Chile) and the Puna, inferred from magnetotelluric data. Journal of Volcanology and Geothermal Research, 217–218.
  16. Díaz, D. (2011). Magnetotelluric study of the Western Cordillera (Northern Chile), with a focus on Lascar volcano. PhD thesis, Freie Univ. Berlin.Google Scholar
  17. Egbert, G. D., & Kelbert, A. (2012). Computational recipes for electromagnetic inverse problems. Geophysical Journal International, 189.
  18. Eydam, D. (2008). Magnetotellurisches Abbild von Fluid- und Schmelzprozessen in Kruste und Mantel der zentralen Anden, Diploma thesis, Fachrichtung Geophysik. Berlin: Freie Univ.Google Scholar
  19. Fernandez-Turiel, J. L., Garcia-Valles, M., Gimeno-Torrente, D., Saavedra-Alonso, J., & Martinez-Manent, S. (2005). The hot spring and geyser sinters of El Tatio, Northern Chile. Sedimentary Geology, 180(3), 125–147.CrossRefGoogle Scholar
  20. Galindo, J. C. (2010). Anisotropic modelling of magnetotelluric data in North Chile. BSc. thesis, Fachrichtung Geophysik, Freie Univ. Berlin.Google Scholar
  21. Goetze, H.-J., & Krause, S. (2002). The Central Andean gravity high, a relict of an old subduction complex? Journal of South American Earth Sciences, 14(8), 799–811.CrossRefGoogle Scholar
  22. Haberland, C., & Rietbrock, A. (2001). Attenuation tomography in the western central Andes: A detailed insight into the structure of a magmatic arc. Journal of Geophysical Research, 106(B6), 11151–11167.CrossRefGoogle Scholar
  23. Heit, B., Koulakov, I., Asch, G., Yuan, X., Kind, R., Alcocer-Rodriguez, I., Tawackoli, S., & Wilke, H. (2008). More constraints to determine the seismic structure beneath the Central Andes at 21\(^{\circ }\)S using teleseismic tomography analysis. Journal of South American Earth Sciences, 25, 22–36.
  24. Hoffmann-Rothe, A., Ritter, O., & Janssen, C. (2004). Correlation of electrical conductivity and structural damage at a major strike-slip fault in northern Chile. Journal of Geophysical Research, 109(B10).
  25. Jordan, T. E., Nester, P. L., Blanco, N., Hoke, G. D., Dávila, F., & Tomlinson, A. J. (2010): Uplift of the Altiplano-Puna plateau: A view from the west. Tectonics, 29.
  26. Kapinos, G., Montahaei, M., Meqbel, N., & Brasse, H. (2015). Three-dimensional electrical resistivity image of the South-Central Chilean subduction zone. Tectonophysics, 666.
  27. Kelbert, A., Meqbel, N., Egbert, G. D., & Tandonc, K. (2014). ModEM: A modular system for inversion of electromagnetic geophysical data. Computers & Geosciences, 66.
  28. Kühn, C., Küster, J., Brasse, H. (2014). Three-dimensional inversion of magnetotelluric data from the Central Andean continental margin. Earth Planets Space, 66.
  29. Klotz, J., Abolghasem, A., Khazaradze, G., Heinze, B., Vietor, T., Hackney, R., et al. (2006). Long-term signals in the present-day deformation field of the Central and Southern Andes and constraints on the viscosity of the earths upper mantle. In O. Oncken, et al. (Eds.), The Andes: Active subduction orogeny frontiers in earth sciences (pp. 65–89). Berlin: Springer.Google Scholar
  30. Krüger, D. (1994). Modellierungen zur Struktur elektrisch leitfähiger Zonen in den südlichen zentralen Anden, Berliner geowiss. Abh. (B), 21, Selbstverlag Fachbereich Geowissenschaften, Freie Univ. Berlin.Google Scholar
  31. Lezaeta P., & Haak V. (2003). Beyond magnetotelluric decomposition: Induction, current channeling, and magnetotelluric phases over 90\({^\circ }\). Journal of Geophysical Research, 108(B6).
  32. Lezaeta, P. (2001). Distortion analysis and 3-D modeling of magnetotelluric data in the Southern Central Andes. PhD thesis, Freie Univ. Berlin.Google Scholar
  33. Pommier, A., & Le-Trong, E. (2011). ’SIGMELTS’: A web portal for electrical conductivity calculations in geosciences. Computers & Geosciences, 37.
  34. Reutter, K. J., Scheuber, E., & Chong, G. (1996). The Precordilleran fault system of Chuquicamata, northern Chile: Evidence for reversals along arc-parallel strike-slip faults. Tectonophysics, 259, 213–228.CrossRefGoogle Scholar
  35. Rodi, W., & Mackie, R. L. (2001). Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversions. Geophysics, 66, 174–187.CrossRefGoogle Scholar
  36. Scheuber, E., Bogdanic, T., Jensen, A., & Reutter, K.-J. (1994). Tectonic development of the North Chilean Andes in relation of plate convergence and magmatism since the Jurassic. In K.-J. Reutter, E. Scheuber, & P. Wigger (Eds.), Tectonics of the Southern Central Andes (pp. 121–139). New York: Springer.Google Scholar
  37. Schwarz, G., & Krüger, D. (1997). Resistivity cross section through the southern central Andes as inferred from magnetotelluric and geomagnetic deep soundings. Journal of Geophysical Research, 102(B6).
  38. Schwarz, G., Diaz, G. C., Krüger, D., Martinez, E., Massow, W., Rath, V., & Viramonte, J. (1994). Crustal high conductivity zones in the southern Central Andes. In Tectonics of the southern Central Andes (pp. 49–67). Berlin: Springer.Google Scholar
  39. Schwarz, G., Haak, V., Martinez, E., & Bannister, J. (1984). The electrical conductivity of the Andean crust in northern Chile and southern Bolivia as inferred from magnetotelluric measurements. Journal of Geophysics, 55, 169–178.Google Scholar
  40. Schurr, B., & Rietbrock, A. (2004). Deep seismic structure of the Atacama basin, northern Chile. Geophysical Research Letters, 31.
  41. Siripunvaraporn, W., Egbert, G., Lenbury, Y., & Uyeshima, M. (2005). Three-dimensional magnetotelluric inversion: Data-space method. Physics of the Earth and Planetary Interiors, 150, 3–14.CrossRefGoogle Scholar
  42. Wiese, H. (1962). Geomagnetische Tiefentellurik Teil II: die Streichrichtung der Untergrundstrukturen des elektrischen Widerstandes, erschlossen aus geomagnetischen Variationen. Geofisica pura e applicata, 52(1), 83–103.CrossRefGoogle Scholar
  43. Wilkes, E., & Görler, K. (1994). Sedimentary and structural evolution of the Salar de Atacama depression. In Tectonics of the Southern Central Andes (pp. 171–188). Berlin: Springer.Google Scholar
  44. Wörner, G., Moorbath, S., Horn, S., Entenmann, J., Harmon, R. S., Davidson, J. P., & Lopez-Escobar, L. (1994). Large-and fine-scale geochemical variations along the Andean arc of northern Chile (17.5–22\({^\circ }\)S). In Tectonics of the southern Central Andes (pp. 77–92). Berlin: Springer.Google Scholar
  45. Yuan, X., Sobolev, S. V., Kind, R., Oncken, O., Bock, G., Asch, G., Schurr, B., Gräber, F., Rudloff, A., Hanka, W., Wylegalla, K., Tibi, R., Haberland, C., Rietbrock, A., Giese, P., Wigger, P., Roewer, P., Zandt, G., Beck, S., Wallace, T., Pardo, M., & Comte, D. (2000). Subduction and collision processes in the Central Andes constrained by converted seismic phases. Nature, 408, 958–961.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Freie Universität Berlin, Fachrichtung GeophysikBerlinGermany
  2. 2.Geological Survey of SwedenUppsalaSweden

Personalised recommendations