Skip to main content
Log in

Subduction Mode Selection During Slab and Mantle Transition Zone Interaction: Numerical Modeling

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Global seismic tomography of the subduction zones shows that the subducting slabs could either stagnate around the 660-km discontinuity, or penetrate into the lower mantle. The stagnating slabs also have various morphologies. These are directly related to the interaction between the subducting slabs and the mantle transition zone (MTZ), the dynamics of which are still debated. Using a 2-D thermo-mechanical model, we systematically investigated the modes of subduction in the mantle transition zone and explored the key constraints of various subduction styles. Four basic subduction modes are obtained in the numerical experiments, including one with slab penetrating through the 660-km discontinuity and three other modes with slab stagnating in the MTZ (i.e. folding, lying and rolling-back). The numerical models indicate that the age of subducting oceanic plate, the thickness of overriding continental lithosphere and the convergence velocity play crucial roles in the dynamics of subducting slab and MTZ interaction. In general, the young subducting slab favors the penetration or folding mode, whereas the old subducting slab tends to result in lying or rolling-back mode, although other parameters can also affect. Our models also show a strong correlation between the subduction mode selection and dip angle of the slab tip when reaching the 660-km phase boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agrusta, R., Goes, S., & van Hunen, J. (2017). Subducting-slab transition-zone interaction: Stagnation, penetration and mode switches. Earth and Planetary Science Letters, 464, 10–23.

    Article  Google Scholar 

  • Agrusta, R., van Hunen, J., & Goes, S. (2014). The effect of metastable pyroxene on the slab dynamics. Geophysical Research Letters, 41(24), 8800–8808.

    Article  Google Scholar 

  • Arredondo, K. M., & Billen, M. I. (2016). The effects of phase transitions and compositional layering in two-dimensional kinematic modes of subductiion. Journal of Geodynamics, 100, 159–174.

    Article  Google Scholar 

  • Arredondo, K. M., & Billen, M. I. (2017). Coupled effects of phase transitions and rheology in 2-D dynamical models of subduction. Journal of Geophysical Research: Solid Earth, 122(7), 5813–5830.

    Google Scholar 

  • Bittner, D., & Schmeling, H. (1995). Numerical modelling of melting processes and induced diapirism in the lower crust. Geophysical Journal International, 123, 59–70.

  • Bellahsen, N., Faccenna, C., & Funiciello, F. (2005). Dynamics of subduction and plate motion in laboratory experiments: Insights into the “plate tectonics” behavior of the earth. Journal of Geophysical Research, 110, B01401. https://doi.org/10.1029/2004JB002999.

    Article  Google Scholar 

  • Billen, M. I. (2008). Modeling the dynamics of subducting slabs. Annual Review of Earth and Planetary Sciences, 36, 325–356.

    Article  Google Scholar 

  • Billen, M. I. (2010). Slab dynamics in the transition zone. Physics of the Earth and Planetary Interiors, 183(1–2), 296–308.

    Article  Google Scholar 

  • Billen, M. I., & Hirth, G. (2007). Rheologic controls on slab dynamics. Geochemistry, Geophysics, Geosystems, 8, Q08012. https://doi.org/10.1029/2007GC001597.

    Article  Google Scholar 

  • Bina, C. R., & Helffrich, G. (1994). Phase transition Clapeyron slopes and transition zone seismic discontinuity topography. Journal of Geophysical Research, 99(B8), 15853–15860.

    Article  Google Scholar 

  • Capitanio, F., Morra, G., & Goes, S. (2007). Dynamic models of downgoing plate-buoyancy driven subduction: Subduction motions and energy dissipation. Earth and Planetary Science Letters, 262(1–2), 284–297.

    Article  Google Scholar 

  • Capitanio, F. A., Stegman, D. R., Moresi, L. N., & Sharples, W. (2010). Upper plate controls on deep subduction, trench migrations and deformations at convergent margins. Tectonophysics, 483(1–2), 80–92.

    Article  Google Scholar 

  • Chen, J., & King, S. D. (1998). The influence of temperature and depth dependent viscosity on geoid and topography profiles from models of mantle convection. Physics of the Earth and Planetary Interiors, 106(1–2), 75–92.

    Article  Google Scholar 

  • Chopelas, A. (1991). Thermal properties of β-Mg2SiO4 at mantle pressures derived from vibrational spectroscopy: Implications for the mantle at 400 km depth. Journal of Geophysical Research, 96, 11817–11829.

    Article  Google Scholar 

  • Christensen, U. R. (1996). The influence of trench migration on slab penetration into the lower mantle. Earth and Planetary Science Letters, 140(1–4), 27–39.

    Article  Google Scholar 

  • Christensen, U. R., & Yuen, D. A. (1984). The interaction of a subducting lithospheric slab with a chemical or phase boundary. Journal of Geophysical Research, 89(B6), 4389–4402.

    Article  Google Scholar 

  • Christensen, U. R., & Yuen, D. A. (1985). Layered convection induced by phase transitions. Journal of Geophysical Research, 90(B12), 10291–10300.

    Article  Google Scholar 

  • Clauser, C., & Huenges, E. (1995). Thermal conductivity of Rocks and Minerals. Americal Geophysical Union.

  • Čížková, H., & Bina, C. R. (2013). Effects of mantle and subduction-interface rheologies on slab stagnation and trench rollback. Earth and Planetary Science Letters, 379, 95–103.

    Article  Google Scholar 

  • Čížková, H., van Hunen, J., & van den Berg, A. (2007). Stress distribution within subducting slabs and their deformation in the transition zone. Physics of the Earth and Planetary Interiors, 161(3–4), 202–214.

    Google Scholar 

  • Čížková, H., van Hunen, J., van den Berg, A. P., & Vlaar, N. J. (2002). The influence of rheological weakening and yield stress on the interaction of slabs with the 670 km discontinuity. Earth and Planetary Science Letters, 199(3–4), 447–457.

    Google Scholar 

  • Clark, S. R., Stegman, D., & Müller, R. D. (2008). Episodicity in back-arc tectonic regimes. Physics of the Earth and Planetary Interiors, 171(1–4), 265–279.

    Article  Google Scholar 

  • Di Giuseppe, E., van Hunen, J., Funiciello, F., Faccenna, C., & Giardini, D. (2008). Slab stiffness control of trench motion: Insights from numerical models. Geochemistry, Geophysics, Geosystems, 9, Q02014. https://doi.org/10.1029/2007GC001776.

    Article  Google Scholar 

  • Dziewonski, A. M., & Anderson, D. L. (1981). Preliminary reference earth model. Physics of the Earth and Planetary Interiors, 25, 297–356.

    Article  Google Scholar 

  • Fukao, Y., & Obayashi, M. (2013). Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity. Journal of Geophysical Research, Solid Earth, 118(11), 5920–5938.

    Article  Google Scholar 

  • Fukao, Y., Obayashi, M., Inoue, H., & Nenbai, M. (1992). Subducting slabs stagnant in the mantle transition zone. Journal of Geophysical Research, 97(B4), 4809–4822.

    Article  Google Scholar 

  • Garel, F., Goes, S., Davies, D. R., Davies, J. H., Kramer, S. C., & Wilson, C. R. (2014). Interaction of subducted slabs with the mantle transition-zone: Aregime diagram from 2-D thermo-mechanical models with a mobile trench and an overriding plate. Geochemistry, Geophysics, Geosystems, 15(5), 1739–1765.

    Article  Google Scholar 

  • Gerya, T. V. (2010). Introduction to numerical geodynamic modelling. Cambridge: Cambridge University Press.

    Google Scholar 

  • Gerya, T. V., & Meilick, F. I. (2011). Geodynamic regimes of subduction under an active margin: Effects of rheological weakening by fluids and melts. Journal of Metamorphic Geology, 29(1), 7–31.

    Article  Google Scholar 

  • Gerya, T. V., & Yuen, D. A. (2003). Characteristics-based marker-in-cell method with conservative finite-differences schemes for modeling geological flows with strongly variable transport properties. Physics of the Earth and Planetary Interiors, 140(4), 293–318.

    Article  Google Scholar 

  • Gerya, T. V., & Yuen, D. A. (2007). Robust characteristics method for modeling multiphase visco-elasto-plastic thermo-mechanical problems. Physics of the Earth and Planetary Interiors, 163(1–4), 83–105.

    Article  Google Scholar 

  • Gerya, T. V., Yuen, D. A., & Maresch, W. V. (2004). Thermomechanical modeling of slab detachment. Earth and Planetary Science Letters, 226(1–2), 101–116.

    Article  Google Scholar 

  • Goes, S., Agrusta, R., van Hunen, J., & Garel, F. (2017). Subduction-transition zone interaction: A review. Geosphere, 13(3), 644–664.

    Article  Google Scholar 

  • Goes, S., Capitanio, F. A., & Morra, G. (2008). Evidence of lower-mantle slab penetration phases in plate motions. Nature, 451, 981–984.

    Article  Google Scholar 

  • Grand, S. P., van der Hilst, R. D., & Widiyantoro, S. (1997). Global seismic tomography: A snapshot of convection in the Earth. GSA Today, 7(4), 1–7.

    Google Scholar 

  • Griffiths, R. W., Hackney, R., & van der Hilst, R. D. (1995). A laboratory investigation of trench migration and the fate of subducted slabs. Earth and Planetary Science Letters, 133(1–2), 1–17.

    Article  Google Scholar 

  • Gurnis, M., & Hager, B. H. (1988). Controls on the structure of subducted slabs. Nature, 335, 317–321.

    Article  Google Scholar 

  • Holt, A. F., Becker, T. W., & Buffett, B. A. (2015). Trench migration and overriding plate stress in dynamic subduction models. Geophysical Journal Internatonal, 201(1), 172–192.

    Article  Google Scholar 

  • Huang, J. L., & Zhao, D. P. (2006). High-resolution mantle tomography of China and surrounding regions. Journal of Geophysical Research, 111, B09305. https://doi.org/10.1029/2005JB004066.

    Google Scholar 

  • Huangfu, P., Wang, Y., Cawood, P. A., Li, Z. H., Fan, W., & Gerya, T. V. (2016). Thermo-mechanical controls of flat subduction: Insights from numerical modeling. Gondwana Research, 40, 170–183.

    Article  Google Scholar 

  • Ita, J. J., & King, S. D. (1994). The sensitivity of convection with an endothermic phase change to the form of governing equations, initial conditions, aspect ratio, and equation of state. Journal of Geophysical Research, 99(B8), 15919–15938.

    Article  Google Scholar 

  • Ito, E., Akaogi, M., Topor, L., & Navrotsky, A. (1990). Negative pressure-temperature slopes for reactions forming MgSiO3 perovskite from calorimetry. Science, 249, 1275–1278.

    Article  Google Scholar 

  • Ito, E., & Takahashi, E. (1989). Postspinel transformations in the system Mg2SiO4–Fe2SiO4 and some geophysical implications. Journal of Geophysical Research, 94, 10637–10646.

    Article  Google Scholar 

  • Karato, S., Riedel, M. R., & Yuen, D. A. (2001). Rheological structure and deformation of subducted slabs in the mantle transition zone: Implications for mantle circulation and deep earthquakes. Physics of the Earth and Planetary Interiors, 127(1–4), 83–108.

    Article  Google Scholar 

  • Karato, S., & Wu, P. (1993). Rheology of the upper mantle: A synthesis. Science, 260(5109), 771–778.

    Article  Google Scholar 

  • Katayama, I., & Karato, S. I. (2008). Low-temperature, high-stress deformation of olivine under water-saturated conditions. Physics of the Earth and Planetary Interiors, 168(3–4), 125–133.

    Article  Google Scholar 

  • Katsura, T., & Ito, E. (1989). The system Mg2SiO4–Fe2SiO4 at high pressures and temperatures: Precise determination of stabilities of olivine, modified spinel, and spinel. Journal of Geophysical Research, 94, 15663–15670.

    Article  Google Scholar 

  • King, S. D., Frost, D. J., & Rubie, D. C. (2015). Why cold slabs stagnate in the transition zone. Geology, 43(3), 231–234.

    Article  Google Scholar 

  • King, S. D., & Ita, J. J. (1995). The effect of slab rheology on mass transport across a phase transition boundary. Journal of Geophysical Research, 100(B10), 20211–20222.

    Article  Google Scholar 

  • Kocks, U. F., Argon, A. S., & Ashby, M. F. (1975). Thermodynamics and kinetics of slip. Progress in Materials Science, 19, 1–281.

    Article  Google Scholar 

  • Kirby, S. H., & Kronenberg, A. K. (1987). Rheology of the lithosphere: selected topics. Review of Geophysics, 25, 1219–1244.

  • Lallemend, S., Heuret, A., Faccenna, C., & Funiciello, F. (2008). Subduction dynamics as revealed by trench migration. Tectonics, 27, TC3014. https://doi.org/10.1029/2007tc002212.

    Google Scholar 

  • Lee, C., & King, S. D. (2011). Dynamic buckling of subducting slabs reconciles geological and geophysical observations. Earth and Planetary Science Letters, 312(3–4), 360–370.

    Article  Google Scholar 

  • Li, Z. H. (2014). A review on the numerical geodynamic modeling of continental subduction, collision and exhumation. Science China: Earth Sciences, 57(1), 47–69.

    Article  Google Scholar 

  • Li, Z. H., Di Leo, J. F., & Ribe, N. M. (2014). Subduction-induced mantle flow, finite strain and seismic anisotropy: Numerical modeling. Journal of Geophysical Research: Solid Earth, 119(6), 5052–5076.

    Google Scholar 

  • Li, Z. H., & Gerya, T. V. (2009). Polyphase formation and exhumation of high- to ultrahigh-pressure rocks in continental subduction zone: Numerical modeling and application to the Sulu ultrahigh-pressure terrane in eastern China. Journal of Geophysical Research: Solid Earth, 114, B09406. https://doi.org/10.1029/2008JB005935.

    Google Scholar 

  • Li, Z. H., Liu, M. Q., & Gerya, T. V. (2015). Material transportation and fluid-melt activity in the subduction channel: numerical modeling. Science China: Earth Sciences, 58, 1251–1268.

  • Li, Z. H., Liu, M., & Gerya, T. V. (2016). Lithosphere delamination in continental collisional orogens: A systematic numerical study. Journal of Geophysical Research: Solid Earth, 121(7), 5186–5211.

    Google Scholar 

  • Li, Z. H., & Ribe, N. M. (2012). Dynamics of free subduction from 3-D boundary-element modeling. Journal of Geophysical Research: Solid Earth, 117, B06408. https://doi.org/10.1029/2012JB009165.

    Google Scholar 

  • Li, C., van der Hilst, R. D., Engdahl, E. R., & Burdick, S. (2008). A new global model for P wave speed variations in Earth’s mantle. Geochemistry, Geophysics, Geosystems, 9, Q05018. https://doi.org/10.1029/2007GC001806.

    Google Scholar 

  • Liu, M. Q., Li, Z. H., & Yang, S. H. (2017). Diapir versus along-channel ascent of crustal material during plate convergence: Constrained by the thermal structure of subduction zones. Journal of Asian Earth Sciences, 145(A), 16–36.

    Article  Google Scholar 

  • Manea, V. C., Pérez-Gussinyé, M., & Manea, M. (2012). Chilean flat slab subduction controlled by overriding plate thickness and trench rollback. Geology, 40(1), 35–38.

    Article  Google Scholar 

  • Mosenfelder, J. L., Marton, F. C., Ross, C. R., Kerschhofer, L., & Rubie, D. C. (2001). Experimental constraints on the depth of olivine metastability in subducting lithosphere. Physics of the Earth and Planetary Interiors, 127(1–4), 165–180.

    Article  Google Scholar 

  • Muller, R. D., Sdrolias, M., Gaina, C., & Roest, W. R. (2008). Age, spreading rates and spreading asymmetry of the world’s ocean crust. Geochemistry, Geophysics, Geosystems, 9, Q04006. https://doi.org/10.1029/2007GC001743.

    Article  Google Scholar 

  • Nakakuki, T., Tagawa, M., & Iwase, Y. (2010). Dynamical mechanisms controlling formation and avalanche of a stagnant slab. Physics of the Earth and Planetary Interiors, 183(1–2), 309–320.

    Article  Google Scholar 

  • Nakao, A., Iwamori, H., & Nakakuki, T. (2016). Effects of water transportation on subduction dynamics: Role of viscosity and density reduction. Earth and Planetary Science Letters, 454, 178–191.

    Article  Google Scholar 

  • O’Driscoll, L. J., Richards, M. A., & Humphreys, E. D. (2012). Nazca-South America interactions and the late Eocene-late Oligocene flat-slab episode in the central Andes. Tectonics, 31, TC2013. https://doi.org/10.1029/2011tc003036.

    Google Scholar 

  • Ranalli, G. (1995). Rheology of the earth, deformation and flow process in geophysics and geodynamics (2nd ed., p. 413). London: Chapman & Hall.

    Google Scholar 

  • Ribe, N. M. (2007). Analytical approaches to mantle dynamics. Treatise on Geophysics, 7, 167–226.

    Article  Google Scholar 

  • Ribe, N. M. (2010). Bending mechanics and mode selection in free subduction: A thin-sheet analysis. Geophysical Journal Internatonal, 180(2), 559–576.

    Article  Google Scholar 

  • Ricard, Y., Richards, M., Lithgow-Bertelloni, C., & Le Stunff, Y. (1993). A geodynamic model of mantle density heterogeneity. Journal of Geophysical Research, 98(B12), 21895–21909.

    Article  Google Scholar 

  • Roda, M., Marotta, A. M., & Spalla, M. I. (2011). The effects of the overriding plate thermal state on the slab dip in an ocean-continent subduction system. Comptes Rendus Geoscience, 343(5), 323–330.

    Article  Google Scholar 

  • Rodríguez-González, J., Billen, M. I., & Negredo, A. M. (2014). Non-steady-state subduction and trench parallel flow induced by overriding plate structure. Earth and Planetary Science Letters, 401, 227–235.

    Article  Google Scholar 

  • Rodríguez-González, J., Negredo, A. M., & Billen, M. I. (2012). The role of the overriding plate thermal state on slab dip variability and on the occurrence of flat subduction. Geochemistry, Geophysics, Geosystems, 13, Q01002. https://doi.org/10.1029/2011GC003859.

    Article  Google Scholar 

  • Schellart, W. P. (2008). Kinematics and flow patterns in deep mantle and upper mantle subduction models: Influence of the mantle depth and slab to mantle viscosity ratio. Geochemistry, Geophysics, Geosystems, 9, Q03014. https://doi.org/10.1029/2007GC001656.

    Article  Google Scholar 

  • Schellart, W. P. (2010). Evolution of subduction zone curvature and its dependence on the trench velocity and the slab to upper mantle viscosity ratio. Journal of Geophysical Research, 115, B11406. https://doi.org/10.1029/2009JB006643.

    Article  Google Scholar 

  • Schmeling, H., Babeyko, A. Y., Ennsa, A., Faccenna, C., Funiciello, F., Gerya, T., et al. (2008). A benchmark comparison of spontaneous subduction models-Towards a free surface. Physics of the Earth and Planetary Interiors, 171(1–4), 198–223.

    Article  Google Scholar 

  • Schmeling, H., Monz, R., & Rubie, D. C. (1999). The influence of olivine metastability on the dynamics of subduction. Earth and Planetary Science Letters, 165(1), 55–66.

    Article  Google Scholar 

  • Stegman, D. R., Farrington, R., Capitanio, F. A., & Schellart, W. P. (2010). A regime diagram for subduction styles from 3-D numerical models of free subduction. Tectono-physics, 483(1–2), 29–45.

    Article  Google Scholar 

  • Tackley, P. J., Stevenson, D. J., Glatzmaier, G. A., & Schubert, G. (1993). Effects of an endothermic phase transition at 670 km depth in a spherical model of convection in the Earth’s mantle. Nature, 361, 699–704.

    Article  Google Scholar 

  • Tagawa, M., Nakakuki, T., & Tajima, F. (2007). Dynamical modeling of trench retreat driven by the slab interaction with the mantle transition zone. Earth Planets Space, 59(2), 65–74.

    Article  Google Scholar 

  • Tetzlaff, M., & Schmeling, H. (2000). The influence of olivine metastability on deep subduction of oceanic lithosphere. Physics of the Earth and Planetary Interiors, 120(1–2), 29–38.

    Article  Google Scholar 

  • Tetzlaff, M., & Schmeling, H. (2009). Time-dependent interaction between subduction dynamics and phase transition kinetics. Geophysical Journal International, 178, 826–844.

    Article  Google Scholar 

  • Torii, Y., & Yoshioka, S. (2007). Physical conditions producing slab stagnation: constraints of the Clapeyron slope, mantle viscosity, trench retreat, and dip angles. Tectonophysics, 445(2), 200–209.

    Article  Google Scholar 

  • Trampert, J., & van der Hilst, R. D. (2005). Towards a quantitative interpretation of global seismic tomography. Earth’s Deep Mantle: Structure, Composition, and Evolution, Geophysical Monograph Series, 160, 47–62.

    Google Scholar 

  • Turcotte, D. L., & Schubert, G. (2002). Geodynamics. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • van der Hilst, R. D. (1995). Complex morphology of subducted lithosphere in the mantle beneath the Tonga trench. Nature, 374, 154–157.

    Article  Google Scholar 

  • van der Hilst, R. D., & Seno, T. (1993). Effects of relative plate motion on the deep structure and penetration depth of slabs below the Izu-Bonin and Mariana island arcs. Earth and Planetary Science Letters, 120(3–4), 395–407.

    Article  Google Scholar 

  • van der Hilst, R. D., Widiyantoro, S., & Engdahl, E. R. (1997). Evidence for deep mantle circulation from global tomography. Nature, 386, 578–584.

    Article  Google Scholar 

  • van der Meer, D. G., Spakman, W., van Hinsbergen, D. J. J., Amaru, M. L., & Torsvik, T. H. (2010). Towards absolute plate motions constrained by lower-mantle slab remnants. Nature Geoscience, 3, 36–40.

    Article  Google Scholar 

  • van Hunen, J., van der Berg, A. P., & Vlaar, N. J. (2004). Various mechanisms to induce present-day flat subduction and implications for the younger earth: A numerical parameter study. Physics of the Earth and Planetary Interiors, 146(1–2), 179–194.

    Article  Google Scholar 

  • Vogt, K., Gerya, T. V., & Castro, A. (2012). Crustal growth at active continental margins: Numerical modeling. Physics of the Earth and Planetary Interiors, 192–193, 1–20.

    Article  Google Scholar 

  • Zhong, S., & Gurnis, M. (1997). Dynamic interaction between tectonic plates, subducting slabs, and the mantle. Earth Interactions, 1, 3–18.

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the project of National Natural Science Foundation of China (Grant nos. 41474086, 41622404, 41590865), and the CAS/CAFEA international partnership program for creative research teams (KZZD-EW-TZ-19). Constructive reviews by Dr. Magali Billen and an anonymous reviewer are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongping Wei or Zhong-Hai Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Wei, D., Li, ZH. et al. Subduction Mode Selection During Slab and Mantle Transition Zone Interaction: Numerical Modeling. Pure Appl. Geophys. 175, 529–548 (2018). https://doi.org/10.1007/s00024-017-1762-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-017-1762-0

Keywords

Navigation