Relevance of Indian Summer Monsoon and its Tropical Indo-Pacific Climate Drivers for the Kharif Crop Production

Article

Abstract

While the Indian agriculture has earlier been dependent on the Indian summer monsoon rainfall (ISMR), a multifold increase in irrigation and storage facilities raise a question whether the ISMR is still as relevant. We revisit this question using the latest observational climate datasets as well as the crop production data and find that the ISMR is still relevant for the Kharif crop production (KCP). In addition, in the recent changes in the tropical Indo-Pacific driver evolutions and frequency, particularly more frequent occurrence of the ENSO Modokis in place of the canonical ENSOs, we carry out a correlation analysis to estimate the impact of the various Indo-Pacific climate drivers on the rainfall of individual Indian states for the period 1998–2013, for which crop production data for the most productive Indian states, namely West Bengal, Odisha, United Andhra Pradesh (UAP), Haryana, Punjab, Karnataka, Kerala, Madhya Pradesh, Bihar and Uttar Pradesh are available. The results suggest that the KCP of the respective states are significantly correlated with the summer monsoon rainfall at the 95–99% confidence levels. Importantly, we find that the NINO 3.4 and ENSO Modoki indices have a statistically significant correlation with the KCP of most of the Indian states, particularly in states such as UAP and Karnataka, through induction of anomalous local convergence/divergence, well beyond the equatorial Indian Ocean. The KCP of districts in UAP also has a significant response to all the climate drivers, having implication for prediction of local crop yield.

Keywords

Indian summer monsoon Kharif crop production ENSO ENSO Modoki IOD Walker circulation 

Notes

Acknowledgements

We acknowledge Charan Teja Tejavath and Reshma M. R, CEOAS, University of Hyderabad, for their assistance while dealing with various visualization tools. Also, we acknowledge our reviewers for their valuable comments and kind suggestions. Figures in the manuscript have been created using the COLA/GrADS software and ArcGIS. We are really thankful to UGC for providing the PhD fellowship during the work period.

Supplementary material

24_2017_1758_MOESM1_ESM.eps (19.2 mb)
Supplementary material 1 (EPS 19617 kb)

References

  1. Ashok, K., & Saji, N. H. (2007). On the impacts of ENSO and Indian Ocean Dipole events on sub-regional Indian summer monsoon rainfall. Natural Hazards, 42(2), 273–285.  https://doi.org/10.1007/s11069-006-9091-0.CrossRefGoogle Scholar
  2. Ashok, K., Soman, M. K., & Satyan, V. (2000). Simulation of monsoon disturbances in a GCM. Pure and Applied Geophysics, 157, 1509–1539.CrossRefGoogle Scholar
  3. Ashok, K., Guan, Z., & Yamagata, T. (2001). Impact of the Indian Ocean Dipole on the relationship between the Indian monsoon rainfall and ENSO karumuri ashok, Zhaoyong Toshio Yamagata technique. Geophysical Research Letters, 28(23), 4499–4502.  https://doi.org/10.1029/2001GL013294.CrossRefGoogle Scholar
  4. Ashok, K., Guan, Z., & Yamagata, T. (2003). A look at the relationship between the ENSO and the Indian Ocean Dipole. Journal of the Meteorological Society of Japan, 81(1), 41–56.  https://doi.org/10.2151/jmsj.81.41.CrossRefGoogle Scholar
  5. Ashok, K., Guan, Z., Saji, N. H., & Yamagata, T. (2004). Individual and combined influences of ENSO and the Indian Ocean Dipole on the Indian summer monsoon. Journal of Climate, 17, 3141–3155.  https://doi.org/10.1175/1520-0442(2004)017<3141:IACIOE>2.0.CO;2.CrossRefGoogle Scholar
  6. Ashok, K., Behera, S. K., Rao, S. A., Weng, H., & Yamagata, T. (2007). El Nino Modoki and its possible teleconnection. Journal of Geophysical Research: Oceans, 112(11), 1–27.  https://doi.org/10.1029/2006JC003798.Google Scholar
  7. Banacos, P. C., & Schultz, D. M. (2005). The use of moisture flux convergence in forecasting convective initiation: historical and operational perspectives. Weather Forecast., 20(3), 351–366.CrossRefGoogle Scholar
  8. Behera, S. K., Luo, J. J., Masson, S., Delecluse, P., Gualdi, S., Navarra, A., et al. (2005). Paramount impact of the Indian Ocean Dipole on the East African short rains: A CGCM study. Journal of Climate, 18, 4514–4530.CrossRefGoogle Scholar
  9. Chen, G., & Tam, C. Y. (2010). Different impacts of two kinds of Pacific Ocean warming on tropical cyclone frequency over the western North Pacific. Geophysical Research Letters, 37, L01803.  https://doi.org/10.1029/2009GL041708.Google Scholar
  10. Dash, S. K., Jenamani, R. K., Kalsi, S. R., & Panda, S. K. (2007). Some evidence of climate change in twentieth-century India. Climate Change, 85, 299–321.  https://doi.org/10.1007/s10584-007-9305-9.CrossRefGoogle Scholar
  11. Gadgil, S., & Gadgil, S. (2006). The Indian monsoon, GDP and agriculture. Economic and Political Weekly, 41, 4887–4895.Google Scholar
  12. Godbole, R. V. (1977). The composite structure of the monsoon depression. Tellus, 29, 25–40.CrossRefGoogle Scholar
  13. Goswami, B. N., Venugopal, V., Sengupta, D., Madhusoodanan, M. S., & Xavier, P. K. (2006). Increasing trend of extreme rain events over India in a warming environment. Science, 314, 1442–1445.  https://doi.org/10.1126/science.1132027.CrossRefGoogle Scholar
  14. Guan, Z., & Yamagata, T. (2003). The unusual summer of 1994 in East Asia: IOD teleconnections. Geophysical Research Letters, 30(10), 1544.  https://doi.org/10.1029/2002GL016831.CrossRefGoogle Scholar
  15. Guan, Z., Ashok, K., & Yamagata, T. (2003). The summertime response of the tropical atmosphere to the Indian Ocean sea surface temperature anomalies. Journal of the Meteorological Society of Japan, 81, 533–561.CrossRefGoogle Scholar
  16. Guhathakurta, P., & Rajeevan, M. (2007). Trends in the rainfall pattern over India. International Journal of Climatology, 28, 1453–1469.  https://doi.org/10.1002/joc.1640.CrossRefGoogle Scholar
  17. Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., et al. (1996). The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society.  https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.Google Scholar
  18. Kao, H. Y., & Yu, J. Y. (2009). Contrasting Eastern-Pacific and Central-Pacific types of ENSO. Journal of Climate, 22(3), 615–632.  https://doi.org/10.1175/2008JCLI2309.1.CrossRefGoogle Scholar
  19. Keshavamurty, R. N. (1982). Response of the atmosphere to sea surface temperature anomalies over the equatorial Pacific and the teleconnections of the southern oscillation. Journal of Atmospheric Science, 39, 1241–1259.CrossRefGoogle Scholar
  20. Krishnan, R., Sabin, T. P., Ayantika, D. C., Kitoh, A., Sugi, M., Murakami, H., et al. (2012). Will the South Asian monsoon overturning circulation stabilize any further? Climate Dynamics, 40(1–2), 187–211.Google Scholar
  21. Krishnaswamy, J., Vaidyanathan, S., Rajagopalan, B., et al. (2015). Non-stationary and non-linear influence of ENSO and Indian Ocean Dipole on the variability of Indian monsoon rainfall and extreme rain events. Climate Dynamics, 45, 175–184.  https://doi.org/10.1007/s00382-014-2288-0.CrossRefGoogle Scholar
  22. Kug, J. S., Jin, F-F., & An, S. I. (2009). Two types of El Niño events: cold tongue El Niño and warm pool El Niño. Journal of Climate, 22, 1499–1515.  https://doi.org/10.1175/2008JCLI2624.1 CrossRefGoogle Scholar
  23. Kumar, T. V. L., & Barbosa, H. A. (2012). Anomalous changes in summer monsoon rainfall and crop yields over India. Disaster Advances, 5, 52–62.Google Scholar
  24. Kumar, K., Rajagopalan, B., & Cane, M. (1999). On the weakening relationship between the indian monsoon and ENSO. Science (New York), 284(5423), 2156–2159.  https://doi.org/10.1126/science.284.5423.2156.CrossRefGoogle Scholar
  25. Marathe, S., Ashok, K., Swapna, P., & Sabin, T. P. (2015). Revisiting El Niño Modokis. Climate Dynamics, 45(11–12), 3527–3545.  https://doi.org/10.1007/s00382-015-2555-8.CrossRefGoogle Scholar
  26. Murtugudde, R., McCreary, J. P., & Busalacchi, A. J. (2000). Oceanic processes associated with anomalous events in the Indian Ocean with relevance to 1997–1998. Journal of Geophysical Research, 105(C2), 3295.  https://doi.org/10.1029/1999JC900294.CrossRefGoogle Scholar
  27. Nanjundiah, R. S., Francis, P. A., Ved, M., & Gadgil, S. (2013). Predicting the extremes of Indian summer monsoon rainfall with coupled ocean–atmosphere models. Current Science, 104(10), 1380–1393.Google Scholar
  28. Nicholls, N. (1983). Predicting Indian monsoon rainfall from sea–surface temperature in the Indonesia–north Australia area. Nature, 306, 576–577.CrossRefGoogle Scholar
  29. Pant, G. B., & Rupa Kumar, K. (1997). Climates of South Asia (p. 317). Hoboken: Wiley.Google Scholar
  30. Parthasarathy, B., Rupa Kumar, K., & Munot, A. (1993). Homogeneous Indian monsoon rainfall: Variability and prediction. Proceedings of the Indian Academy of Sciences - Earth and Planetary Sciences, 120, 121–155Google Scholar
  31. Parthasarathy, B., Munot, A. A., Kothawale, D. R. (1994). All-India monthly and seasonal rainfall series: 1871–1993. Theoretical and Applied Climatology, 49 (4), 217–224.CrossRefGoogle Scholar
  32. Pradhan, P. K., Preethi, B., Ashok, K., Krishnan, R., & Sahai, A. K. (2011). Modoki, Indian Ocean dipole, and Western North Pacific typhoons: possible implications for extreme events. Journal of Geophysical Research, 116, D18108.  https://doi.org/10.1029/2011JD015666.CrossRefGoogle Scholar
  33. Prajeesh, A. G., Ashok, K., & Rao, D. V. B. (2013). Falling monsoon depression frequency: a Gray-Sikka conditions perspective. Scientific Reports, 3(1), 2989.  https://doi.org/10.1038/srep02989.CrossRefGoogle Scholar
  34. Prakash, S., Mahesh, C., Sathiyamoorthy, V., & Gairola, R. (2013). Increasing trend of northeast monsoon rainfall over the equatorial Indian Ocean and peninsular India. Theoretical and Applied Climatology, 112(1–2), 185–191.  https://doi.org/10.1007/s00704-012-0719-6.CrossRefGoogle Scholar
  35. Preethi, B., Sabin, T. P., Adedoyin, J. A., & Ashok, K. (2015). Impacts of the ENSO Modoki and other tropical Indo-Pacific climate-drivers on African rainfall. Scientific Reports, 5, 16653.CrossRefGoogle Scholar
  36. Rajendran, K., Kitoh, A., Srinivasan, J., Mizuta, R., & Krishnan, R. (2012). Monsoon circulation interaction with Western Ghats orography under changing climate: projection by a 20-km mesh AGCM. Theoretical and Applied Climatology, 110(4), 555–571.  https://doi.org/10.1007/s00704-012-0690-2.CrossRefGoogle Scholar
  37. Rao, Y. P. (1976). Southwest monsoon. Synoptic Meteorology, Meteorological Monograph, India Meteorological Department, 1, 367.Google Scholar
  38. Rasmusson, E. M., & Carpenter, T. H. (1983). The relationship between eastern equatorial Pacific SSTs and rainfall over India and Sri Lanka. Monthly Weather Review, 111, 517–528.CrossRefGoogle Scholar
  39. Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D. P., et al. (2003). Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Journal of Geophysical Research, 108(D14), 4407.  https://doi.org/10.1029/2002JD002670.CrossRefGoogle Scholar
  40. Saji, N. H., Goswami, B. N., Vinayachandran, P. N., & Yamagata, T. (1999). A dipole mode in the tropical Indian Ocean. Nature, 401(6751), 360–363.  https://doi.org/10.1038/43854.Google Scholar
  41. Selvaraju, R. (2003). Impact of El Niño-southern oscillation on Indian foodgrain production. International Journal of Climatology, 23(2), 187–206.  https://doi.org/10.1002/joc.869.CrossRefGoogle Scholar
  42. Sikka, D. R., & Gadgil, S. (1980). On the maximum cloud zone and the ITCZ over Indian, longitudes during the southwest monsoon. Monthly Weather Review.  https://doi.org/10.1175/1520-0493(1980)108<1840:OTMCZA>2.0.CO;2.Google Scholar
  43. Trenberth, K. E. (1997). The definition of El Niño. Bulletin of the American Meteorological Society, 78, 2771–2777.  https://doi.org/10.1175/1520-0477(1997)078,2771:TDOENO.2.0.CO;2.CrossRefGoogle Scholar
  44. Webster, P. J., Magaña, V. O., Palmer, T. N., Shukla, J., Tomas, R. A., Yanai, M., et al. (1998). Monsoons: processes, predictability, and the prospects for prediction. Journal of Geophysical Research, 103(C7), 14451–14510.  https://doi.org/10.1029/97JC02719.CrossRefGoogle Scholar
  45. Webster, P. J., Moore, A. M., Loschnigg, J. P., & Leben, R. R. (1999). Coupled ocean-atmosphere dynamics in the Indian Ocean during 1997–98. Nature, 401, 356–360.CrossRefGoogle Scholar
  46. Weng, H., Ashok, K., Behera, S. K., Rao, S. A., & Yamagata, T. (2007). Impacts of recent El Niño on Modoki dry/wet conditions in the Pacific rim during boreal summer. Climate Dynamics, 29, 113–129.  https://doi.org/10.1007/s00382-007-0234-0.CrossRefGoogle Scholar
  47. Wilks, D. S. (1995). Statistical Methods in the Atmospheric Sciences: An Introduction, (pp. 467). San Diego, Calif: Academic.Google Scholar
  48. Yadav, R. K. (2012). Why is ENSO influencing Indian northeast monsoon in the recent decades? International Journal of Climatology, 32(14), 2163–2180.  https://doi.org/10.1002/joc.2430.Google Scholar
  49. Yamagata, T., Behera, S. K., Luo, J.-J., Masson, S., Jury, M. R., & Rao, S. A. (2004). The coupled ocean-atmosphere variability in the tropical Indian Ocean. In C. Wang et al. (Eds.), Earth’s climate: The ocean atmosphere interaction (Vol. 147, pp. 189–211). Washington, DC: AGU.Google Scholar
  50. Yuan, C., & Yamagata, T. (2015). Impacts of IOD, ENSO and ENSO Modoki on the Australian winter wheat yields in recent decades. Scientific Reports, 5, 17252.  https://doi.org/10.1038/srep17252.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017
corrected publication [January/2018]

Authors and Affiliations

  1. 1.Centre for Earth, Ocean and Atmospheric SciencesUniversity of HyderabadHyderabadIndia

Personalised recommendations