Skip to main content
Log in

Short-Range Prediction of Monsoon Precipitation by NCMRWF Regional Unified Model with Explicit Convection

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

There are increasing efforts towards the prediction of high-impact weather systems and understanding of related dynamical and physical processes. High-resolution numerical model simulations can be used directly to model the impact at fine-scale details. Improvement in forecast accuracy can help in disaster management planning and execution. National Centre for Medium Range Weather Forecasting (NCMRWF) has implemented high-resolution regional unified modeling system with explicit convection embedded within coarser resolution global model with parameterized convection. The models configurations are based on UK Met Office unified seamless modeling system. Recent land use/land cover data (2012–2013) obtained from Indian Space Research Organisation (ISRO) are also used in model simulations. Results based on short-range forecast of both the global and regional models over India for a month indicate that convection-permitting simulations by the high-resolution regional model is able to reduce the dry bias over southern parts of West Coast and monsoon trough zone with more intense rainfall mainly towards northern parts of monsoon trough zone. Regional model with explicit convection has significantly improved the phase of the diurnal cycle of rainfall as compared to the global model. Results from two monsoon depression cases during study period show substantial improvement in details of rainfall pattern. Many categories in rainfall defined for operational forecast purposes by Indian forecasters are also well represented in case of convection-permitting high-resolution simulations. For the statistics of number of days within a range of rain categories between ‘No-Rain’ and ‘Heavy Rain’, the regional model is outperforming the global model in all the ranges. In the very heavy and extremely heavy categories, the regional simulations show overestimation of rainfall days. Global model with parameterized convection have tendency to overestimate the light rainfall days and underestimate the heavy rain days compared to the observation data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Baldauf, M., Seifert, A., Förstner, J., Majewski, D., Raschendorfer, M., & Reinhardt, T. (2011). Operational convective-scale numerical weather prediction with the COSMO model: description and sensitivities. Monthly Weather Review. https://doi.org/10.1175/MWR-D-10-05013.1.

    Google Scholar 

  • Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L. H., Ménard, C. B., et al. (2011). The joint UK land environment simulator (JULES), model description—part 1: Energy and water fluxes. Geoscientific Model Development, 4, 677–699.

    Article  Google Scholar 

  • Betts, A. K., & Jakob, C. (2002). Evaluation of the diurnal cycle of precipitation, surface thermodynamics, and surface fluxes in the ECMWF model using LBA data. Journal of Geophysical Research. https://doi.org/10.1029/2001JD000427.

    Google Scholar 

  • Birch, C. E., Parker, D. J., Marsham, J. H., Copsey, D., & Garcia-Carreras, L. (2014). A seamless assessment of the role of convection in the water cycle of the West African monsoon. Journal of Geophysical Research Atmospheres, 119, 2890–2912. https://doi.org/10.1002/2013JD020887.

    Article  Google Scholar 

  • Birch, C. E., Roberts, M. J., Garcia-Carreras, L., Ackerley, D., Reeder, M. J., Lock, A. P., et al. (2015). Sea-breeze dynamics and convection initiation: The influence of convective parameterization in weather and climate model biases. Journal of Climate, 28, 8093–8108. https://doi.org/10.1175/JCLI-D-14-00850.1.

    Article  Google Scholar 

  • Biswadip, G. (2014). IRS-P6 AWiFS derived gridded land use/land cover data compatible to mesoscale models (MM5 and WRF) over Indian region. NRSC Technical Documentation, No. NRSC-ECSA-ACSGOCT-2014-TR-651, pp. 1–11.

  • Brown, A., Milton, S., Cullen, M., Golding, B., Mitchell, J., & Shelly, A. (2012). Unified modeling and prediction of weather and climate: A 25-year journey. Bulletin of the American Meteorological Society, 93, 1865–1877.

    Article  Google Scholar 

  • Bryan, G. H., Wyngaard, J. C., & Fritsch, J. M. (2003). Resolution requirements for the simulation of deep moist convection. Monthly Weather Review, 131, 2394–2416.

    Article  Google Scholar 

  • Clark, A. J., Gallus, W. A., Jr., & Weisman, M. L. (2010). Neighborhood-based verification of precipitation forecasts from convection-allowing NCAR WRF Model simulations and the operational NAM. Weather and Forecasting, 25, 1495–1509. https://doi.org/10.1175/2010WAF2222404.1.

    Article  Google Scholar 

  • Clark, D. B., Mercado, L. M., Sitch, S., Jones, C. D., Gedney, N., Best, M. J., et al. (2011). The joint UK land environment simulator (JULES), model description—part 2: Carbon fluxes and vegetation dynamics. Geoscientific Model Development, 4, 701–722.

    Article  Google Scholar 

  • Dai, A. (2006). Precipitation characteristics in eighteen coupled climate models. Journal of Climate, 19, 4605–4630. https://doi.org/10.1175/JCLI3884.1.

    Article  Google Scholar 

  • Dash, S. K., Ashu, Mamgain, Pattnayak, K. C., & Giorgi, F. (2013). Spatial and temporal variations in Indian summer monsoon rainfall and temperature: An analysis based on RegCM3 simulations. Pure and Applied Geophysics, 170(4), 655–674.

    Article  Google Scholar 

  • Dash, S. K., Pattnayak, K. C., Panda, S. K., Vaddi, Deepika, & Mamgain, Ashu. (2015). Impact of domain size on the simulation of Indian summer monsoon in RegCM4 using mixed convection scheme and driven by HadGEM2. Climate Dynamics, 44, 961. https://doi.org/10.1007/s00382-014-2420-1.

    Article  Google Scholar 

  • Dash, S. K., Shekher, M. S., Singh, G. P., & Vernekar, A. D. (2002). Relationship between surface fields over Indian Ocean and monsoon rainfall over homogeneous zones of India. Mausam, 53, 133–144.

    Google Scholar 

  • De, U. S., Dube, R. K., & Prakasa Rao, G. S. (2005). Extreme weather events over India in the last 100 years. Journal of Indian Geophysics Union, 9(3), 173–187.

    Google Scholar 

  • Dirmeyer, P. A., Cash, B. A., Kinter, J. L., III, Jung, T., Marx, L., SatohM, Stan C., et al. (2012). Simulating the diurnal cycle of rainfall in global climate models: Resolution versus parameterization. Climate Dynamics, 39, 399–418. https://doi.org/10.1007/s00382-011-1127-9.

    Article  Google Scholar 

  • Essery, R. L. H., Best, M. J., Betts, R. A., Cox, P. M., & Taylor, C. M. (2003). Explicit representation of subgrid heterogeneity in a GCM land surface scheme. Journal of Hydrometeorology, 4, 530–543. https://doi.org/10.1175/1525-7541(2003)004<0530:EROSHI>2.0.CO;2.

    Article  Google Scholar 

  • George, J. P., Indira Rani, S., Jayakumar, A., Mohandas, S., Mallick, S., Lodh, A., Rakhi, R., Sreevathsa, M. N. R., & Rajagopal, E. N. (2016). NCUM data assimilation system. Monsoon Report, NMRF/TR/01/2016.

  • GEWEX Cloud System Science Team. (1993). The GEWEX cloud system study (GCSS). Bulletin of the American Meteorological Society, 74, 387–399. https://doi.org/10.1175/1520-0477(1993)074<0387:TGCSS>2.0.CO;2.

    Article  Google Scholar 

  • Goswami, B. N., Venugopal, V., Sengupta, D., Madhusoodanan, M. S., & Xavier Prince, K. (2006). Increasing trend of extreme rain events over India in a warming environment. Science, 314, 1442–1445.

    Article  Google Scholar 

  • Gregory, D., & Rowntree, P. R. (1990). A mass flux convection scheme with representation of cloud ensemble characteristics and stability-dependent closure. Monthly Weather Review, 118(7), 1483–1506. https://doi.org/10.1175/1520-0493(1990)118<1483:AMFCSW>2.0.CO;2.

    Article  Google Scholar 

  • Guichard, F., Petch, J. C., Redelsperger, J.-L., Bechtold, P., Chaboureau, J. P., Cheinet, S., et al. (2004). Modelling the diurnal cycle of deep precipitating convection over land with cloud-resolving models and single-column models. Quarterly Journal of the Royal Meteorological Society, 130(604C), 3139–3172.

    Article  Google Scholar 

  • Halder, M., Hazra, A., Mukhopadhyay, P., & Siingh, D. (2015). Effect of the better representation of the cloud ice-nucleation in WRF microphysics schemes: A case study of a severe storm in India. Atmospheric Research, 154, 155–174.

    Article  Google Scholar 

  • Hastings, D. A., & Dunbar, P. K. (1999). Global land one-kilometer base elevation (GLOBE) digital elevation model, documentation (Vol. 1). Boulder: National Oceanic and Atmospheric Administration (NOAA), National Geophysical Data Center.

    Google Scholar 

  • Hohenegger, C., Brockhaus, P., & Schär, C. (2008). Towards climate simulations at convection permitting scales. Meteorologische Zeitschrift, 17, 383–394.

    Article  Google Scholar 

  • Holloway, C. E., Woolnough, S. J., & Lister, G. M. S. (2012). Precipitation distributions for explicit versus parametrized convection in a large-domain high-resolution tropical case study. Quarterly Journal of the Royal Meteorological Society, 138, 1692–1708. https://doi.org/10.1002/qj.1903.

    Article  Google Scholar 

  • Hou, A. Y., Kakar, R. K., Neeck, S., Azarbarzin, A. A., Kummerow, C. D., Kojima, M., et al. (2014). The global precipitation measurement mission. Bulletin of the American Meteorological Society, 95, 701–722. https://doi.org/10.1175/BAMS-D-13-00164.1.

    Article  Google Scholar 

  • Huffman, G. (2015). GPM L3 IMERG Final 1 month 0.1 degree × 0.1 degree precipitation. Greenbelt: Goddard Earth Sciences Data and Information Services Center (GES DISC). https://doi.org/10.5067/gpm/imerg/month/3b.

    Google Scholar 

  • Janjic, Z. I., Black, T. L., Pyle, M., Chuang, H. Y., Rogers, E., & DiMego, G. (2007). An evolutionary approach to nonhydrostatic modeling. Retrieved from http://www.Wrfmodel.org/wrfadmin/publications/Chuang_Janjic_NWP50yearsfinalshort.pdf.

  • Jeong, J. H., Song, S. K., Lee, H. W., & Kim, Y. K. (2012). Effects of high-resolution land cover and topography on local circulations in two different coastal regions of Korea: a numerical modeling study. Meteorology and Atmospheric Physics, 118(1–2), 1–20.

    Article  Google Scholar 

  • Kain, J. S., Weiss, S. J., Bright, D. R., Baldwin, M. E., Levit, J. J., Carbin, G. W., et al. (2008). Some practical considerations regarding horizontal resolution in the first generation of operational convection allowing NWP. Weather and Forecasting, 23, 931–952.

    Article  Google Scholar 

  • Kumar, A., Chen, F., Barlage, M., Ek, M. B., & Niyogi, D. (2014). Assessing impacts of integrating MODIS vegetation data in the weather research and forecasting (WRF) model coupled to two different canopy-resistance approaches. Journal of Applied Meteorology and Climatology, 53(6), 1362–1380.

    Article  Google Scholar 

  • Larson, V. E., Schanen, D. P., Wang, M., Ovchinnikov, M., & Ghan, S. (2012). PDF parameterization of boundary layer clouds in models with horizontal grid spacings from 2 to 16 km. Monthly Weather Review, 140, 285–306.

    Article  Google Scholar 

  • Lean, H. W., Clark, P. A., Dixon, M., Roberts, N. M., Fitch, A., Forbes, R., et al. (2008). Characteristics of high-resolution versions of the Met Office unified model for forecasting convection over the United Kingdom. Monthly Weather Review, 136, 3408–3424.

    Article  Google Scholar 

  • Litta, A. J., Mohanty, U. C., Das, S., & Idicula, S. M. (2012). Numerical simulation of severe local storms over east India using WRF-NMM mesoscale model. Atmospheric Research, 116, 161–184.

    Article  Google Scholar 

  • Liu, C., & Moncrieff, M. W. (2007). Sensitivity of cloud-resolving simulations of warm-season convection to cloud microphysics parameterizations. Monthly Weather Review, 135, 2854–2868.

    Article  Google Scholar 

  • Lock, A. P., Brown, A. R., Bush, M. R., Martin, G. M., & Smith, R. N. B. (2000). A new boundary layer mixing scheme. Part I: Scheme description and single-column model tests. Monthly Weather Review, 128, 3187–3199. https://doi.org/10.1175/1520-0493(2000)128<3187:ANBLMS>2.0.CO;2.

    Article  Google Scholar 

  • Love, B. S., Matthews, A. J., & Lister, G. M. S. (2011). The diurnal cycle of precipitation over the Maritime Continent in a high-resolution atmospheric model. Quarterly Journal of the Royal Meteorological Society, 137, 934–947. https://doi.org/10.1002/qj.809.

    Article  Google Scholar 

  • Mamgain, A., Unnikrishnan, C. K., & Rajagopal, E. N. (2016). Recent land use/land cover changes and their impact on the evolution and structure of thunderstorm in New Delhi, Proceedings SPIE 9882, Remote Sensing and Modeling of the Atmosphere, Oceans, and Interactions (Vol. 9882, p. 98820), May 3, 2016. https://doi.org/10.1117/12.2223602.

  • Mandke, S., Sahai, A. K., Shinde, M. A., Joseph, Susmitha, & Chattopadhyay, R. (2007). Simulated changes in active/break spells during the Indian summer monsoon due to enhanced CO2 concentrations: Assessment from selected coupled atmosphere–ocean global climate models. International Journal of Climatology, 27, 837–859.

    Article  Google Scholar 

  • Marsham, J. H., Dixon, N. S., Garcia-Carreras, L., Lister, G. M. S., Parker, D. J., Knippertz, P., et al. (2013). The role of moist convection in the West African monsoon system: Insights from continental-scale convection-permitting simulations. Geophysical Research Letters, 40, 1843–1849. https://doi.org/10.1002/grl.50347.

    Article  Google Scholar 

  • Mitra, A. K., Rajagopal, E. N., Iyengar, G. R., Mahapatra, D. K., Momin, I. M., Gera, A., et al. (2013). Prediction of monsoon using a seamless coupled modelling system. Current Science, 104(10), 1369–1379.

    Google Scholar 

  • Murakami, T., Nakazawa, T., & He, T. (1984). On the 40–50 day oscillation during the 1979 northern hemisphere summer. Part II: Heat and moisture budget. Journal of the Meteorological Society of Japan, 62, 469–484.

    Article  Google Scholar 

  • Pearson, K. J., Lister, G. M. S., Birch, C. E., Allan, R. P., Hogan, R. J., & Woolnough, S. T. (2014). Modelling the diurnal cycle of tropical convection across the ‘grey zone’. Quarterly Journal of the Royal Meteorological Society, 140, 491–499. https://doi.org/10.1002/qj.2145.

    Article  Google Scholar 

  • Petch, J. C. (2006). Sensitivity studies of developing convection in a cloud-resolving model. Quarterly Journal of the Royal Meteorological Society, 132, 345–358.

    Article  Google Scholar 

  • Prakash, S., Mitra, A. K., Pai, D. S., & AghaKouchak, A. (2016). From TRMM to GPM: How well can heavy rainfall be detected from space? Advances in Water Resources. https://doi.org/10.1016/j.advwatres.2015.11.008.

    Google Scholar 

  • Rajeevan, M., Kesarkar, A., Thampi, S. B., Rao, T. N., Radhakrishna, B., & Rajasekhar, M. (2010). Sensitivity of WRF cloud microphysics to simulations of a severe thunderstorm event over Southeast India. Annales Geophysicae, 28, 603–619. https://doi.org/10.5194/angeo-28-603-2010.

    Article  Google Scholar 

  • Randall, D., Khairoutdinov, M., Arakawa, A., & Grabowski, W. (2003). Breaking the cloud parameterization deadlock. Bulletin of the American Meteorological Society, 84, 1547–1564. https://doi.org/10.1175/BAMS-84-11-1547.

    Article  Google Scholar 

  • Saito, K., Fujita, T., Yamada, Y., Ishida, J.-I., Kumagai, Y., Aranami, K., et al. (2006). The operational JMA nonhydrostatic mesoscale model. Monthly Weather Review, 134, 1266–1298.

    Article  Google Scholar 

  • Sato, T., Miura, H., Satoh, M., Takayabu, Y. N., & Wang, Y. (2009). Diurnal cycle of precipitation in the tropics simulated in a global cloud-resolving model. Journal of Climate, 22(18), 4809–4826. https://doi.org/10.1175/2009JCLI2890.1.

    Article  Google Scholar 

  • Schwartz, C. S. (2016). Improving large-domain convection-allowing forecasts with high-resolution analyses and ensemble data assimilation. Monthly Weather Review, 144(5), 1777–1803.

    Article  Google Scholar 

  • Sikka, D. R. (1977). Some aspects of the life history, structure and movement of monsoon depressions. Pure and Applied Geophysics, 115, 1501–1529.

    Article  Google Scholar 

  • Smith, S. A., Vosper, S. B., & Field, P. R. (2015). Sensitivity of orographic precipitation enhancement to horizontal resolution in the operational Met Office Weather forecasts. Meteorological Applications. https://doi.org/10.1002/met.1352.

    Google Scholar 

  • Tao, W. K., & Moncrieff, M. W. (2009). Multiscale cloud system modeling. Reviews of Geophysics. https://doi.org/10.1029/2008rg000276.

    Google Scholar 

  • Trenberth, K. E., Dai, A., Rasmussen, R. M., & Parsons, D. B. (2003). The changing character of precipitation. Bulletin of the American Meteorological Society, 84, 1205–1217.

    Article  Google Scholar 

  • Turner, A. G., & Slingo, J. M. (2009). Subseasonal extremes of precipitation and active-break cycles of the Indian summer monsoon in a climate-change scenario. Quarterly Journal of the Royal Meteorological Society, 135, 549–567.

    Article  Google Scholar 

  • Unnikrishnan, C. K., Biswadip, G., Mohandas, S., Mamgain, A., Rajagopal, E. N., Iyengar, G. R., et al. (2016). Recent changes on land use/land cover over Indian region and its impact on the weather prediction using Unified model. Atmospheric Science Letters, 17, 1–7.

    Article  Google Scholar 

  • Walters, D., Boutle, I., Brooks, M., Thomas, M., Stratton, R., Vosper, S., et al. (2017). The Met Office unified model global atmosphere 6.0/6.1 and JULES global land 6.0/6.1 configurations. Geoscientific Model Development, 10(4), 1487. https://doi.org/10.5194/gmd-2016-194.

    Article  Google Scholar 

  • Webster, S., Chan, S., Hassim, M. E., Kendon, E., Marzin, C., Sahany, S., & Scannell, C. (2015). Convective-scale modelling. Singapore’s second national climate change study: Climate projections to 2100, Meteorological Service Singapore Rep., pp. 1–21. Retrieved from http://ccrs.weather.gov.sg/wp-content/uploads/2015/07/V2_Ch6_Convective_Scale_Modelling.pdf.

  • Webster, P. J., Magana, V. O., Palmer, T. N., Shukla, J., Tomas, R. A., Yanai, M. U., et al. (1998). Monsoons: Processes, predictability, and the prospects for prediction. Journal of Geophysical Research Oceans, 103, 14451–14510.

    Article  Google Scholar 

  • Weisman, M. L., Davis, C. A., Wang, W., Manning, K. W., & Klemp, J. B. (2008). Experiences with 0–36 h explicit convective forecasts with the WRF-ARW model. Weather and Forecasting, 23, 407–437. https://doi.org/10.1175/2007WAF2007005.1.

    Article  Google Scholar 

  • Weisman, M. L., Skamarock, W. C., & Klemp, J. B. (1997). The resolution dependence of explicitly modeled convective systems. Monthly Weather Review, 125, 527–548.

    Article  Google Scholar 

  • Willetts, P. D., Marsham, J. H., Birch, C. E., Parker, D. J., Webster, S., & Petch, J. (2017). Moist convection and its upscale effects in simulations of the Indian monsoon with explicit and parametrised convection. Quarterly Journal of the Royal Meteorological Society, 143, 1073–1085. https://doi.org/10.1002/qj.2991.

    Article  Google Scholar 

  • Wilson, D. R., & Ballard, S. P. (1999). A microphysically based precipitation scheme for the UK Meteorological Office unified model. Quarterly Journal of the Royal Meteorological Society, 125(557), 1607–1636. https://doi.org/10.1002/qj.49712555707.

    Article  Google Scholar 

  • Wood, N., Staniforth, A., White, A., Allen, T., Diamantakis, M., Gross, M., et al. (2014). An inherently mass-conserving semi-implicit semi-Lagrangian discretization of the deep-atmosphere global non-hydrostatic equations. Quarterly Journal of the Royal Meteorological Society, 140, 1505–1520. https://doi.org/10.1002/qj.2235.

    Article  Google Scholar 

  • Yang, G. Y., & Slingo, J. (2001). The diurnal cycle in the tropics. Monthly Weather Review, 129, 784–801.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Director, NRSC/ISRO for Lu/Lc data. We acknowledge the NASA for the GPM IMERG data product. This study is a part of the MoES-NERC INCOMPASS project. Authors thank the anonymous reviewers for their constructive comments, which helped us to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashu Mamgain.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2216 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamgain, A., Rajagopal, E.N., Mitra, A.K. et al. Short-Range Prediction of Monsoon Precipitation by NCMRWF Regional Unified Model with Explicit Convection. Pure Appl. Geophys. 175, 1197–1218 (2018). https://doi.org/10.1007/s00024-017-1754-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-017-1754-0

Keywords

Navigation