Skip to main content

Ground Motion Prediction Model Using Artificial Neural Network

Abstract

This article focuses on developing a ground motion prediction equation based on artificial neural network (ANN) technique for shallow crustal earthquakes. A hybrid technique combining genetic algorithm and Levenberg–Marquardt technique is used for training the model. The present model is developed to predict peak ground velocity, and 5% damped spectral acceleration. The input parameters for the prediction are moment magnitude (M w), closest distance to rupture plane (R rup), shear wave velocity in the region (V s30) and focal mechanism (F). A total of 13,552 ground motion records from 288 earthquakes provided by the updated NGA-West2 database released by Pacific Engineering Research Center are utilized to develop the model. The ANN architecture considered for the model consists of 192 unknowns including weights and biases of all the interconnected nodes. The performance of the model is observed to be within the prescribed error limits. In addition, the results from the study are found to be comparable with the existing relations in the global database. The developed model is further demonstrated by estimating site-specific response spectra for Shimla city located in Himalayan region.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

References

  • Abrahamson, N. A., Silva, W. J., & Kamai, R. (2014). Summary of the ASK14 ground motion relation for active crustal regions. Earthquake Spectra, 30(3), 1025–1055.

    Article  Google Scholar 

  • Abrahamson, N. A., & Youngs, R. R. (1992). A stable algorithm for regression analyses using the random effects model. Bulletin of the Seismological Society of America, 82(1), 505–510.

    Google Scholar 

  • Ahmad, I., El Naggar, M. H., & Khan, A. N. (2008). Neural network based attenuation of strong motion peaks in Europe. Journal of Earthquake Engineering, 12(5), 663–680.

    Article  Google Scholar 

  • Alavi, A. H., & Gandomi, A. H. (2011). Prediction of principal ground-motion parameters using a hybrid method coupling artificial neural networks and simulated annealing. Computers and Structures, 89(23), 2176–2194.

    Article  Google Scholar 

  • Ancheta, T. D., Darragh, R. B., Stewart, J. P., Seyhan, E., Silva, W. J., Chiou, B. S.-J., et al. (2014). NGA-West2 database. Earthquake Spectra, 30(3), 989–1005.

    Article  Google Scholar 

  • Anderson, J. G. (1997). Nonparametric description of peak acceleration above a subduction thrust. Seismological Research Letters, 68(1), 86–93.

    Article  Google Scholar 

  • Atkinson, G. M. (2001). An alternative to stochastic ground-motion relations for use in seismic hazard analysis in eastern North America. Seismological Research Letters, 72, 299–306.

    Article  Google Scholar 

  • Berry, M. J. A., & Linoff, G. (1997). Data mining techniques. New York: Wiley.

    Google Scholar 

  • Bilham, R., Gaur, V. K., & Molnar, P. (2001). Himalayan seismic hazard. Science (Washington), 293(5534), 1442–1444.

    Article  Google Scholar 

  • Boore, D. M., Stewart, J. P., Seyhan, E., & Atkinson, G. M. (2014). NGA-West2 equations for predicting PGA, PGV, and 5% damped PSA for shallow crustal earthquakes. Earthquake Spectra, 30(3), 1057–1085.

    Article  Google Scholar 

  • Cameron, W. I., & Green, R. A. (2007). Damping correction factors for horizontal ground-motion response spectra. Bulletin of the Seismological Society of America, 97(3), 934–960.

    Article  Google Scholar 

  • Campbell, K. W., & Bozorgnia, Y. (2014). NGA-West2 ground motion model for the average horizontal components of PGA, PGV, and 5% damped linear acceleration response spectra. Earthquake Spectra, 30(3), 1087–1115.

    Article  Google Scholar 

  • Chiou, B. J., & Youngs, R. R. (2008). An NGA model for the average horizontal component of peak ground motion and response spectra. Earthquake Spectra, 24(1), 173–215.

    Article  Google Scholar 

  • Chiou, B. S. J., & Youngs, R. R. (2014). Update of the Chiou and Youngs NGA model for the average horizontal component of peak ground motion and response spectra. Earthquake Spectra, 30(3), 1117–1153.

    Article  Google Scholar 

  • Cornell, C. A. (1968). Engineering seismic risk analysis. Bulletin of Seismological Society of America, 58, 1583–1606.

    Google Scholar 

  • De Natale, G., Faccioli, E., & Zollo, A. (1988). Scaling of peak ground motions from digital recordings of small earthquakes at Campi Flegrei, southern Italy. Pure and Applied Geophysics, 126(1), 37–53.

    Article  Google Scholar 

  • Der Kiureghian, A., & Ang, A. H.-S. (1977). A fault rupture model for seismic risk analysis. Bulletin of Seismological Society of America, 67, 1173–1194.

    Google Scholar 

  • Derras, B., Bard, P. Y., & Cotton, F. (2014). Towards fully data driven ground-motion prediction models for Europe. Bulletin of Earthquake Engineering, 12(1), 495–516.

    Article  Google Scholar 

  • Derras, B., Bard, P. Y., & Cotton, F. (2016). Site-condition proxies, ground motion variability, and data-driven GMPEs: Insights from the NGA-West2 and RESORCE data sets. Earthquake Spectra, 32(4), 2027–2056.

    Article  Google Scholar 

  • Derras, B., Bard, P. Y., & Cotton, F. V. (2017). S30, slope, H 800 and f 0: performance of various site-condition proxies in reducing ground-motion aleatory variability and predicting nonlinear site response. Earth, Planets and Space, 69(1), 133. https://doi.org/10.1186/s40623-017-0718-z.

    Article  Google Scholar 

  • Douglas, J. (2016). Ground motion prediction equations 1964–2016. http://www.gmpe.org.uk. Accessed 20 Dec 2017.

  • Esteva, L., & Rosenblueth, E. (1964). Espectros de temblores a distancias moderadas y grandes. Boletin Sociedad Mexicana de Ingenieria Sesmica, 2, 1–18.

    Google Scholar 

  • Frank, I. E., & Todeschini, R. (1994). The data analysis handbook (Vol. 14). Amsterdam: Elsevier.

    Google Scholar 

  • Garson, G. D. (1991). Interpreting neural-network connection weights. AI Expert, 6, 47–51.

    Google Scholar 

  • Gevrey, M., Dimopoulos, I., & Lek, S. (2003). Review and comparison of methods to study the contribution of variables in artificial neural network models. Ecological Modelling, 160(3), 249–264.

    Article  Google Scholar 

  • Golbraikh, A., & Tropsha, A. (2002). Beware of q2! Journal of Molecular Graphics and Modelling, 20(4), 269–276.

    Article  Google Scholar 

  • Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. Reading: Addison-Wesley.

    Google Scholar 

  • GSI. (2000). Seismotectonic Atlas of India and its environs. Bangalore: Geological Survey of India.

    Google Scholar 

  • Güllü, H., & Erçelebi, E. (2007). A neural network approach for attenuation relationships: An application using strong ground motion data from Turkey. Engineering Geology, 93(3–4), 65–81.

    Article  Google Scholar 

  • Günaydın, K., & Günaydın, A. (2008). Peak ground acceleration prediction by artificial neural networks for northwestern Turkey. Mathematical Problems in Engineering. https://doi.org/10.1155/2008/919420. (article id: 919420).

    Google Scholar 

  • Heaton, J. (2008). Introduction to neural networks with Java. Heaton: Heaton Research, Inc.

    Google Scholar 

  • Herrmann, R. B., & Goertz, M. J. (1981). A numerical study of peak ground motion scaling. Bulletin of the Seismological Society of America, 71(6), 1963–1979.

    Google Scholar 

  • IBC (2009). International Building Code. International Code Council, Washington, D.C.

  • Kramer, S. (1996). Geotechnical earthquake engineering. Upper Saddle River: Prentice-Hall, Inc.

    Google Scholar 

  • Levenberg, K. (1944). A method for the solution of certain non-linear problems in least squares. The Quarterly of Applied Mathematics, 2, 164–168.

    Article  Google Scholar 

  • MATLAB (2015) Version R2015a, The MathWorks Inc., Natick, MA.

  • McGuire, R. K. (1974). Seismic structural response risk analysis, incorporating peak response regressions on earthquake magnitude and distance. Research Report R74-51, Massachusetts Institute of Technology, Department of Civil Engineering, Cambridge, USA.

  • Muthuganeisan, P., & Raghukanth, S. T. G. (2016a). Site-specific probabilistic seismic hazard map of Himachal Pradesh, India. Part I. Site-specific ground motion relations. Acta Geophysica, 64(2), 336–361.

    Article  Google Scholar 

  • Muthuganeisan, P., & Raghukanth, S. T. G. (2016b). Site-specific probabilistic seismic hazard map of Himachal Pradesh, India. Part II. Hazard estimation. Acta Geophysica, 64(4), 853–884.

    Article  Google Scholar 

  • Nadaraya, E. A. (1964). On estimating regression. Theory of Probability and its Applications, 9(1), 141–142.

    Article  Google Scholar 

  • Registrar General India. (2011). Census of India 2011: provisional population totals-India data sheet. Office of the Registrar General Census Commissioner, India. Indian Census Bureau.

  • Royston, P. (1992). Approximating the Shapiro–Wilk W-test for non-normality. Statistics and Computing, 2(3), 117–119.

    Article  Google Scholar 

  • Schnabel, P. B., & Seed, H. B. (1973). Accelerations in rock for earthquakes in the western United States. Bulletin of the Seismological Society of America, 63(2), 501–516.

    Google Scholar 

  • Scordilis, E. M. (2006). Empirical global relations converting MS and mb to moment magnitude. Journal of Seismology, 10(2), 225–236.

    Article  Google Scholar 

  • Strasser, F. O., Bommer, J. J., & Abrahamson, N. A. (2008) Estimating ground‐motion variability: Issues, insights & challenges. In Proceedings of the 14th World Conference on Earthquake Engineering.

  • Tezcan, J., & Cheng, Q. (2012). Q., Support vector regression for estimating earthquake response spectra. Bulletin of Earthquake Engineering, 10(4), 1205–1219. https://doi.org/10.1007/s10518-_012-_9350-_2.

    Article  Google Scholar 

  • Thode, H. C. (2002). Testing for normality (Vol. 164). Boca Raton: CRC Press.

    Book  Google Scholar 

  • Thomas, S., Pillai, G. N., Pal, K., & Jagtap, P. (2016). Prediction of ground motion parameters using randomized ANFIS (RANFIS). Applied Soft Computing, 40, 624–634. https://doi.org/10.1016/j.asoc.2015.12.013.

    Article  Google Scholar 

  • Zhao, J. X., Jiang, F., Shi, P., Xing, H., Huang, H., Hou, R., et al. (2016). Ground-motion prediction equations for subduction slab earthquakes in Japan using site class and simple geometric attenuation functions. Bulletin of the Seismological Society of America, 106(4), 1535–1551. https://doi.org/10.1785/0120150056.

    Article  Google Scholar 

Download references

Acknowledgements

We thank David M. Boore and an anonymous reviewer, for their creative criticisms which helped in improving the quality of the paper. We would also like to appreciate the efforts done by the PEER group in processing and compiling the various databases and making it available to public.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. T. G. Raghukanth.

Ethics declarations

Data and resources

The data sets used in this article is that collected and processed by the Pacific Earthquake Engineering Research (PEER) Center available online in following link: http://peer.berkeley.edu/ngawest2/databases/.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 29 kb) Appendix A: Summary of the ground motion data considered in developing the model

24_2017_1751_MOESM2_ESM.m

Supplementary material 2 (M 10 kb) Appendix B: An MATLAB function that could be used to predict ground motion using the Developed ANN model

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dhanya, J., Raghukanth, S.T.G. Ground Motion Prediction Model Using Artificial Neural Network. Pure Appl. Geophys. 175, 1035–1064 (2018). https://doi.org/10.1007/s00024-017-1751-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-017-1751-3

Keywords

  • GMPE
  • NGA-West2
  • ANN
  • genetic algorithm
  • seismic hazard