The “Tsunami Earthquake” of 13 April 1923 in Northern Kamchatka: Seismological and Hydrodynamic Investigations

Article

Abstract

We present a seismological and hydrodynamic investigation of the earthquake of 13 April 1923 at Ust’-Kamchatsk, Northern Kamchatka, which generated a more powerful and damaging tsunami than the larger event of 03 February 1923, thus qualifying as a so-called “tsunami earthquake”. On the basis of modern relocations, we suggest that it took place outside the fault area of the mainshock, across the oblique Pacific-North America plate boundary, a model confirmed by a limited dataset of mantle waves, which also confirms the slow nature of the source, characteristic of tsunami earthquakes. However, numerical simulations for a number of legitimate seismic models fail to reproduce the sharply peaked distribution of tsunami wave amplitudes reported in the literature. By contrast, we can reproduce the distribution of reported wave amplitudes using an underwater landslide as a source of the tsunami, itself triggered by the earthquake inside the Kamchatskiy Bight.

Keywords

Tsunami Kamchatka landslides simulations 

Notes

Acknowledgements

We thank Bob Engdahl for a customized relocation of the Ust’-Kamchatsk event. We are grateful to Editor A. Rabinovich and two anonymous reviewers for their constructive comments. Olga Yakovenko helped optimize transliteration of Russian names. This research was partly supported by the National Science Foundation, under Grant Number OCE-13-31463 to the University of Pittsburgh; we thank Louise Comfort for her leadership in that joint venture. Some figures were drafted using the GMT software (Wessel and Smith 1991).

References

  1. Aki, K., & Richards, P. G. (2002). Quantitative seismology. University Science Books.Google Scholar
  2. Ambraseys, N. (1991). The Rukwa earthquake of 13 December 1910 in East Africa. Terra Nova, 3(2), 202–211.CrossRefGoogle Scholar
  3. Anonymous. (2001). Province of Kamchatka map. Moscow: Federal Service of Geodesy and Geography of Russia.Google Scholar
  4. Bell, R., Holden, C., Power, W., Wang, X., & Downes, G. (2014). Hikurangi margin tsunami earthquake generated by slow seismic rupture over a subducted seamount. Earth and Planetary Science Letters, 397, 1–9.CrossRefGoogle Scholar
  5. Borisov, V. I. (2002). Forgotten Tragedy, www.kamchatsky-krai.ru/geography/article/borisov.htm, Accessed on October 23, 2017 [in Russian].
  6. Bourgeois, J., & Pinegina, T. K. (2017). 1997 Kronotsky earthquake and tsunami and their predecessors, Kamchatka, Russia. Natural Hazards and Earth System Sciences Discussions (submitted).Google Scholar
  7. Bourgeois, J., Pinegina, T. K., Ponomareva, V., & Zaretskaia, N. (2006). Holocene tsunamis in the southwestern Bering Sea, Russian Far East, and their tectonic implications. Geological Society of America Bulletin, 118(3–4), 449–463.CrossRefGoogle Scholar
  8. Brunsden, D., & Prior, D. B. (1984). Slope instability. New York: Wiley.Google Scholar
  9. Campbell, K. W., & Bozorgnia, Y. (2003). Updated near-source ground-motion (attenuation) relations for the horizontal and vertical components of peak ground acceleration and acceleration response spectra. Bulletin of the Seismological Society of America, 93(1), 314–331.CrossRefGoogle Scholar
  10. Cormier, V. F. (1975). Tectonics near the junction of the Aleutian and Kuril-Kamchatka arcs and a mechanism for middle Tertiary magmatism in the Kamchatka basin. Geological Society of America Bulletin, 86(4), 443–453.CrossRefGoogle Scholar
  11. Courant, R., Friedrichs, K., & Lewy, H. (1928). Über die partiellen Differenzengleichungen der mathematischen Physik. Mathematische Annalen, 100(1), 32–74.CrossRefGoogle Scholar
  12. Daughton, T. M. (1990). Focal mechanism of the 22 November 1969 Kamchatka earthquake from teleseismic waveform analysis. Honors Thesis, Colorado College, Colorado Springs. 70 pp.Google Scholar
  13. DeMets, C., Gordon, R. G., Argus, D., & Stein, S. (1990). Current plate motions. Geophysical Journal International, 101(2), 425–478.CrossRefGoogle Scholar
  14. Dziewonski, A., Chou, T.-A., & Woodhouse, J. (1981). Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. Journal of Geophysical Research: Solid Earth, 86(B4), 2825–2852.CrossRefGoogle Scholar
  15. Ebel, J. E., & Chambers, D. W. (2016). Using the locations of \(M\ge 4\) earthquakes to delineate the extents of the ruptures of past major earthquakes. Geophysical Journal International, 207(2), 862–875.CrossRefGoogle Scholar
  16. Ekström, G., Nettles, M., & Dziewoński, A. (2012). The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes. Physics of the Earth and Planetary Interiors, 200, 1–9.CrossRefGoogle Scholar
  17. Engdahl, E. R., & Villaseñor, A. (2002). Global seismicity: 1900–1999.Google Scholar
  18. Fedotov, C., Gusev, A., Zobin, B., Kondratienko, A., & Chepkynas, K. (1973). The Ozernovskiy earthquake and tsunami of 22 (23) November 1969. Earthquakes in the USSR in the year 1969, 195–208. [in Russian].Google Scholar
  19. Fisher, R., Jantsch, M., & Comer, R. (1982). General Bathymetric Chart of the Oceans (GEBCO).Google Scholar
  20. Fryer, G. J., & Watts, P. (2001). Motion of the Ugamak slide, probable source of the tsunami of 1 April 1946. In Proceedings of the International Tsunami Symposium (pp. 683–694).Google Scholar
  21. Fukao, Y. (1979). Tsunami earthquakes and subduction processes near deep-sea trenches. Journal of Geophysical Research: Solid Earth, 84(B5), 2303–2314.CrossRefGoogle Scholar
  22. Geller, R. J. (1976). Scaling relations for earthquake source parameters and magnitudes. Bulletin of the Seismological Society of America, 66(5), 1501–1523.Google Scholar
  23. Gorin, S., & Chebanova, V. (2011). Salinization-related transformation of hydrological regime and benthos in the Nerpichye and Kultuchnoe Lakes, at the Kamchatka River estuary. In V.V. Levandinov Memorial Lectures (pp. 119–128). Vladivostok: Russian Academy of Sciences [in Russian].Google Scholar
  24. Gusev, A. A. (2004). Schematic map of the source zones of large Kamchatka earthquakes of the instrumental epoch. In Complex seismological and geophysical investigations of Kamchatka (pp. 75–80). Petropavlovsk–Kamchatsky. [in Russian].Google Scholar
  25. Gusev, A. A., Zobin, V. M., Kondratenko, A. M., & Shumilina, L. S. (1975). The earthquake of Ust’-Kamchatsk, 15 XII. Earthquakes in the USSR in the year 1971 (pp. 172–184) [in Russian].Google Scholar
  26. Gutenberg, B., & Richter, C. F. (1954). Seismicity of the Earth and associated phenomena. Princeton, NJ: Princeton Univ. Press.Google Scholar
  27. Hill, E. M., Borrero, J. C., Huang, Z., Qiu, Q., Banerjee, P., Natawidjaja, D. H., et al. (2012). The 2010 \(M_w=7.8\) Mentawai earthquake: Very shallow source of a rare tsunami earthquake determined from tsunami field survey and near-field GPS data. Journal of Geophysical Research: Solid Earth, 117, B06402.Google Scholar
  28. Hoffmann, G., Al-Yahyai, S., Naeem, G., Kociok, M., & Grützner, C. (2014). An Indian Ocean tsunami triggered remotely by an onshore earthquake in Balochistan, Pakistan. Geology, 42(10), 883–886.CrossRefGoogle Scholar
  29. Jaggar, T. (1930). Volcano letter, 274, 1–4.Google Scholar
  30. Jobert, N., & Jobert, G. (1983). An application of ray theory to the propagation of waves along a laterally heterogeneous spherical surface. Geophysical Research Letters, 10(12), 1148–1151.CrossRefGoogle Scholar
  31. Kanamori, H. (1972). Mechanism of tsunami earthquakes. Physics of the Earth and Planetary Interiors, 6(5), 346–359.CrossRefGoogle Scholar
  32. Kanamori, H. (1977). The energy release in great earthquakes. Journal of Geophysical Research, 82(20), 2981–2987.CrossRefGoogle Scholar
  33. Kanamori, H. (1985). Non-double-couple seismic source. In Proc: XXIIIrd Gen. Assemb. Intl. Assoc. Seismol. Phys. Earth Inter (p. 425)Google Scholar
  34. Kawata, Y., Benson, B. C., Borrero, J. C., Borrero, J. L., Davies, H. L., Lange, W. P., et al. (1999). Tsunami in Papua New Guinea was as intense as first thought. Eos, Transactions American Geophysical Union, 80(9), 101–105.CrossRefGoogle Scholar
  35. Keefer, D. K. (1984). Landslides caused by earthquakes. Geological Society of America Bulletin, 95(4), 406–421.CrossRefGoogle Scholar
  36. Kuksina, L., & Chalov, S. (2012). The suspended sediment discharge of the rivers running along territories of contemporary volcanism in Kamchatka. Geography and Natural Resources, 33(1), 67–73.CrossRefGoogle Scholar
  37. López, A. M., & Okal, E. A. (2006). A seismological reassessment of the source of the 1946 Aleutian ‘tsunami’ earthquake. Geophysical Journal International, 165(3), 835–849.CrossRefGoogle Scholar
  38. Mansinha, L., & Smylie, D. (1971). The displacement fields of inclined faults. Bulletin of the Seismological Society of America, 61(5), 1433–1440.Google Scholar
  39. Martin, M. E., Weiss, R., Bourgeois, J., Pinegina, T. K., Houston, H., & Titov, V. V. (2008). Combining constraints from tsunami modeling and sedimentology to untangle the 1969 Ozernoi and 1971 Kamchatskii tsunamis. Geophysical Research Letters, 35, L01610.Google Scholar
  40. Meniaǐlov, A. A. (1946). Tsunamis in the Ust’-Kamchatsk region. Bull. Kamchatka Volcanol. Stn. (Vol. 12) [in Russian].Google Scholar
  41. Minoura, K., Gusiakov, V., Kurbatov, A., Takeuti, S., Svendsen, J., Bondevik, S., et al. (1996). Tsunami sedimentation associated with the 1923 Kamchatka earthquake. Sedimentary Geology, 106(1–2), 145–154.CrossRefGoogle Scholar
  42. Newman, A. V., & Okal, E. A. (1998). Teleseismic estimates of radiated seismic energy: The \(E/M_0\) discriminant for tsunami earthquakes. Journal of Geophysical Research: Solid Earth, 103(B11), 26885–26898.CrossRefGoogle Scholar
  43. Okal, E. (2008). The excitation of tsunamis by earthquakes. In E. Bernard & A. Robinson (Eds.) The Sea: Ideas and observations on progress in the study of the seas (pp. 137–177). Cambridge: Harvard Univ. Press.Google Scholar
  44. Okal, E. A. (1992). Use of the mantle magnitude \(M_m\) for the reassessment of the moment of historical earthquakes. Pure and Applied Geophysics, 139(1), 17–57.CrossRefGoogle Scholar
  45. Okal, E. A. (2003). Normal mode energetics for far-field tsunamis generated by dislocations and landslides. Pure and Applied Geophysics, 160(10), 2189–2221.CrossRefGoogle Scholar
  46. Okal, E. A. (2011). Tsunamigenic earthquakes: past and present milestones. Pure and Applied Geophysics, 168(6–7), 969–995.CrossRefGoogle Scholar
  47. Okal, E. A., & Borrero, J. C. (2011). The ‘tsunami earthquake’ of 1932 June 22 in Manzanillo, Mexico: seismological study and tsunami simulations. Geophysical Journal International, 187(3), 1443–1459.CrossRefGoogle Scholar
  48. Okal, E. A., & Saloor, N. (2017). Historical tsunami earthquakes in the Southwest Pacific: An extension to \(\Delta \) \(>80^{\circ }\) of the energy-to-moment parameter \(\Theta \). Geophysical Journal International, 210(2), 852–873.CrossRefGoogle Scholar
  49. Okal, E. A., & Synolakis, C. E. (2004). Source discriminants for near-field tsunamis. Geophysical Journal International, 158(3), 899–912.CrossRefGoogle Scholar
  50. Okal, E. A., & Talandier, J. (1986). \(T\)-wave duration, magnitudes and seismic moment of an earthquake—Application to tsunami warning. Journal of Physics of the Earth, 34(1), 19–42.CrossRefGoogle Scholar
  51. Okal, E. A., & Talandier, J. (1989). \(M_m\): A variable-period mantle magnitude. Journal of Geophysical Research: Solid Earth, 94(B4), 4169–4193.CrossRefGoogle Scholar
  52. Okal, E. A., Plafker, G., Synolakis, C. E., & Borrero, J. C. (2003). Near-field survey of the 1946 Aleutian tsunami on Unimak and Sanak Islands. Bulletin of the Seismological Society of America, 93(3), 1226–1234.CrossRefGoogle Scholar
  53. Okal, E. A., Fritz, H. M., Raad, P. E., Synolakis, C., Al-Shijbi, Y., & Al-Saifi, M. (2006a). Oman field survey after the December 2004 Indian Ocean tsunami. Earthquake Spectra, 22(S3), 203–218.CrossRefGoogle Scholar
  54. Okal, E. A., Fritz, H. M., Raveloson, R., Joelson, G., Pančošková, P., & Rambolamanana, G. (2006b). Madagascar field survey after the December 2004 Indian Ocean tsunami. Earthquake Spectra, 22(S3), 263–283.CrossRefGoogle Scholar
  55. Okal, E. A., Synolakis, C. E., Uslu, B., Kalligeris, N., & Voukouvalas, E. (2009). The 1956 earthquake and tsunami in Amorgos, Greece. Geophysical Journal International, 178(3), 1533–1554.CrossRefGoogle Scholar
  56. Okal, E. A., Visser, J. N., & de Beer, C. H. (2014). The Dwarskersbos, South Africa local tsunami of August 27, 1969: Field survey and simulation as a meteorological event. Natural Hazards, 74(1), 251–268.CrossRefGoogle Scholar
  57. Omori, F. (1902). On tsunamis around Japan. Rep. Imper. Earthq. Comm., 34, 5–79 [in Japanese].Google Scholar
  58. Polet, J., & Kanamori, H. (2000). Shallow subduction zone earthquakes and their tsunamigenic potential. Geophysical Journal International, 142(3), 684–702.CrossRefGoogle Scholar
  59. Prior, D. B., Bornhold, B. D., Coleman, J. M., & Bryant, W. R. (1982). Morphology of a submarine slide, Kitimat Arm, British Columbia. Geology, 10(11), 588–592.CrossRefGoogle Scholar
  60. Rabinovich, A. B. (1997). Spectral analysis of tsunami waves: Separation of source and topography effects. Journal of Geophysical Research: Oceans, 102(C6), 12663–12676.CrossRefGoogle Scholar
  61. Salaree, A., & Okal, E. A. (2015). Field survey and modelling of the Caspian Sea tsunami of 1990 June 20. Geophysical Journal International, 201(2), 621–639.CrossRefGoogle Scholar
  62. Satake, K. (1988). Effects of bathymetry on tsunami propagation: Application of ray tracing to tsunamis. Pure and Applied Geophysics, 126(1), 27–36.CrossRefGoogle Scholar
  63. Sella, G. F., Dixon, T. H., & Mao, A. (2002). REVEL: A model for recent plate velocities from space geodesy. Journal of Geophysical Research: Solid Earth, 107(2081).Google Scholar
  64. Shuto, N., Suzuki, T., & Hasegawa, K. (1986). A study of numerical techniques on the tsunami propagation and run-up. Science of Tsunami Hazard, 4, 111–124.Google Scholar
  65. Skempton, A. (1953). Soil mechanics in relation to geology. Proceedings of the Yorkshire Geological Society, 29(1), 33–62.CrossRefGoogle Scholar
  66. Soloviev, S., Go, C. N., & Kim, K. S. (1986). Catalog of tsunamis in the Pacific, 1969–1982, Moscow: USSR Academy of Sciences, Soviet Geophysical Committee, [in English; translation: Amerind Publishing Co., New Delhi, 1998].Google Scholar
  67. Soloviev, S., Campos-Romero, M., & Plink, N. (1992). Orléansville tsunami of 1954 and El Asnam tsunami of 1980 in the Alboran Sea (Southwestern Mediterranean Sea). Izvestiya Earth Phys, 28(9), 739–760.Google Scholar
  68. Soloviev, S. L., & Ferchev, M. D. (1961). Summary of data on tsunamis in the USSR, Bull. Council Seism. Acad. USSR, 9, 23–55.Google Scholar
  69. Stauder, W., & Mualchin, L. (1976). Fault motion in the larger earthquakes of the Kurile-Kamchatka Arc and of the Kurile-Hokkaido corner. Journal of Geophysical Research, 81(2), 297–308.CrossRefGoogle Scholar
  70. Storchak, D., Di Giacomo, D., Engdahl, E., Harris, J., Bondár, I., Lee, W., et al. (2015). The ISC-GEM global instrumental earthquake catalogue (1900–2009): Introduction. Physics of the Earth and Planetary Interiors, 239, 48–63.CrossRefGoogle Scholar
  71. Synolakis, C., Bernard, E., Titov, V., Kânoğlu, U., & González, F. (2008). Validation and verification of tsunami numerical models. Pure and Applied Geophysics, 165(11–12), 2197–2228.CrossRefGoogle Scholar
  72. Synolakis, C. E., Bardet, J.-P., Borrero, J. C., Davies, H. L., Okal, E. A., Silver, E. A., Sweet, S., & Tappin, D. R. (2002). The slump origin of the 1998 Papua New Guinea tsunami. Proceedings of the Royal Society of London, Series A, 458, 763–789.CrossRefGoogle Scholar
  73. Tanioka, Y., Ruff, L., & Satake, K. (1997). What controls the lateral variation of large earthquake occurrence along the Japan Trench? Island Arc, 6(3), 261–266.CrossRefGoogle Scholar
  74. The Los Angeles Times. (1923). 15 April 1923.Google Scholar
  75. Titov, V. & González, F. (1997). Implementation and Testing of the Method of Splitting Tsunami (MOST) Model, US Department of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Pacific Marine Environmental Laboratory.Google Scholar
  76. Titov, V., Kânoğlu, U., & Synolakis, C. (2016). Development of MOST for real-time tsunami forecasting. Journal of Waterway, Port, Coast and Oceanic Engineering, 142, 03116004-1–03116004-16.Google Scholar
  77. Titov, V. V., & Synolakis, C. E. (1995). Modeling of breaking and nonbreaking long-wave evolution and runup using VTCS-2. Journal of Waterway, Port, Coastal, and Ocean Engineering, 121(6), 308–316.CrossRefGoogle Scholar
  78. Titov, V. V., & Synolakis, C. E. (1997). Extreme inundation flows during the Hokkaido-Nansei-Oki tsunami. Geophysical Research Letters, 24(11), 1315–1318.CrossRefGoogle Scholar
  79. Titov, V. V., & Synolakis, C. E. (1998). Numerical modeling of tidal wave run-up. Journal of Waterway, Port, Coastal, and Ocean Engineering, 124(4), 157–171.CrossRefGoogle Scholar
  80. Troshin, A. N., & D\({\mathop {{\rm ia}}\limits ^{\frown }}\)gilev, G. A. (1926). The Ust’ Kamchatsk earthquake of April 13, 1923. Library Institute Physics Earth, USSR Academy of Sciences, Moscow [in Russian].Google Scholar
  81. Utsu, T. (1970). Aftershocks and earthquake statistics (1): Some parameters which characterize an aftershock sequence and their interrelations. Journal of the Faculty of Science, Hokkaido University. Series 7, Geophysics, 3(3), 129–195.Google Scholar
  82. von Huene, R., Kirby, S., Miller, J., & Dartnell, P. (2014). The destructive 1946 Unimak near-field tsunami: New evidence for a submarine slide source from reprocessed marine geophysical data. Geophysical Research Letters, 41(19), 6811–6818.CrossRefGoogle Scholar
  83. Wald, D. J., Quitoriano, V., Heaton, T. H., & Kanamori, H. (1999). Relationships between peak ground acceleration, peak ground velocity, and modified Mercalli intensity in California. Earthquake Spectra, 15(3), 557–564.CrossRefGoogle Scholar
  84. Wessel, P., & Smith, W. H. (1991). Free software helps map and display data, Eos, Transactions American Geophysical Union, 72(41), 441 and 445–446.Google Scholar
  85. Woods, M. T., & Okal, E. A. (1987). Effect of variable bathymetry on the amplitude of teleseismic tsunamis: A ray-tracing experiment. Geophysical Research Letters, 14(7), 765–768.CrossRefGoogle Scholar
  86. Wysession, M. E., Okal, E. A., & Miller, K. L. (1991). Intraplate seismicity of the Pacific Basin, 1913–1988. Pure and Applied Geophysics, 135(2), 261–359.CrossRefGoogle Scholar
  87. Zayakin, Y., & Luchinina, A. (1987). Catalogue of Tsunamis on Kamchatka. Obninsk: VNIIGMI-MTSD. [in Russian].Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Earth and Planetary SciencesNorthwestern UniversityEvanstonUSA

Personalised recommendations