Advertisement

Pure and Applied Geophysics

, Volume 175, Issue 3, pp 977–988 | Cite as

Downward continuation of airborne gravity data by means of the change of boundary approach

  • A. H. Mansi
  • M. Capponi
  • D. SampietroEmail author
Article

Abstract

Within the modelling of gravity data, a common practice is the upward/downward continuation of the signal, i.e. the process of continuing the gravitational signal in the vertical direction away or closer to the sources, respectively. The gravity field, being a potential field, satisfies the Laplace’s equation outside the masses and this means that it allows to unambiguously perform this analytical continuation only in a source-free domain. The analytical continuation problem has been solved both in the space and spectral domains by exploiting different algorithms. As well known, the downward continuation operator, differently from the upward one, is an unstable operator, due to its spectral characteristics similar to those of a high-pass filter, and several regularization methods have been proposed in order to stabilize it. In this work, an iterative procedure to downward/upward continue the gravity field observations, acquired at different altitudes, is proposed. This methodology is based on the change of boundary principle and it has been expressively thought for aerogravimetric observations for geophysical exploration purposes. Within this field of application, usually several simplifications can be applied, basically due to the specific characteristics of the airborne surveys which are usually flown at almost constant altitude as close as possible to the terrain. For instance, these characteristics, as shown in the present work, allow to perform the downward continuation without the need of any regularization. The goodness of the proposed methodology has been evaluated by means of a numerical test on real data, acquired in the South of Australia. The test shows that it is possible to move the aerogravimetric data, acquired along tracks with a maximum height difference of about 250 m, with accuracies of the order of 10\(^{-3}\) mGal.

Keywords

Downward continuation Gravity FFT airborne gravimetry change of boundary approach 

References

  1. Amante, C., & Eakins, B.W. (2009). ETOPO1 1 Arc-minute global relief model: procedures, data sources and analysis. NOAA Technical Memorandum NESDIS NGDC-24, National Geophysical Data Center, NOAA.  https://doi.org/10.7289/V5C8276M.
  2. Blakely, R.J. (1996). Potential theory in gravity and magnetic applications. Cambridge: Cambridge University Press. ISBN:9780521575478.Google Scholar
  3. Caputo, M. (1966). Review of formulas for the space normal gravity field of the Earth. In H. Orlin (Ed.), Gravity anomalies: unsurveyed areas (pp. 121–126). Washington, D.C.: American Geophysical Union.  https://doi.org/10.1029/GM009p0121.
  4. CarbonNet Project Airborne Gravity Survey (2012). Gippsland basin nearshore airborne gravity survey, Victoria, Australia. Victoria: Department of primary industries, Victoria State Government.Google Scholar
  5. Evjen, H. M. (1936). The place of the vertical gradient in gravitational interpretations. Geophysics, 1(1), 127136.  https://doi.org/10.1190/1.1437067.CrossRefGoogle Scholar
  6. Fedi, M., & Florio, G. (2002). A stable downward continuation by using the ISVD method. Geophysical Journal International, 151(1), 146–156.  https://doi.org/10.1046/j.1365-246X.2002.01767.x.CrossRefGoogle Scholar
  7. Forsberg R., & Kenyon S., (1995). Downward continuation of airborne gravity data. Proceedings Of the IAG symposium on Airborne Gravimetry Field Determination, Special Report 60010 of the Department of Geomatics Engineering of the University of Calgary, pp 73–78.Google Scholar
  8. Frigo, M., & Steven, G. J. (2005). The design and implementation of FFTW3. Proceedings of the IEEE, 93(2), 216231.  https://doi.org/10.1109/JPROC.2004.840301.CrossRefGoogle Scholar
  9. Gilardoni, M., Reguzzoni, M., & Sampietro, D. (2016). GECO: a global gravity model by locally combining GOCE data and EGM2008. Studia Geophysica et Geodaetica, 60(2), 228–247.  https://doi.org/10.1007/s11200-015-1114-4.CrossRefGoogle Scholar
  10. Goli, M., & Najafi-Alamdari, M. (2011). Planar, spherical and ellipsoidal approximations of Poisson’s integral in near zone. Journal of Geodetic Science, 1(1), 17–24.  https://doi.org/10.2478/v10156-010-0003-6.CrossRefGoogle Scholar
  11. Hansen, P. C. (2010). Discrete inverse problems: insight and algorithms. Philadelphia: SIAM.  https://doi.org/10.1137/1.9780898718836. ISBN:9780486495491.CrossRefGoogle Scholar
  12. Landweber, L. (1951). An iteration formula for Fredholm integral equations of the first kind. American Journal of Mathematics, 73(3), 615–624.  https://doi.org/10.2307/2372313.CrossRefGoogle Scholar
  13. Li, Y. (2000). Airborne gravimetry for geoid determination. PhD thesis, UCGE rep 20141, Department of Geomatics Engineering, University of Calgary, Calgary.Google Scholar
  14. Novák, P., Kern, M., & Schwarz, K. P. (2001). Numerical studies on the harmonic downward continuation of band-limited airborne gravity. Studia Geophysica et Geodaetica, 45(4), 327–345.  https://doi.org/10.1023/A:1022028218964.CrossRefGoogle Scholar
  15. Oliver, M. A., & Webster, R. (1990). Kriging: a method of interpolation for geographical information systems. International Journal of Geographical Information Systems, 4(3), 313–332.  https://doi.org/10.1080/02693799008941549.CrossRefGoogle Scholar
  16. Pavlis, N. K., Holmes, S. A., Kenyon, S. C., & Factor, J. K. (2012). The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of Geophysical Research: Solid Earth.  https://doi.org/10.1029/2011JB008916.
  17. Richter, M. (2016). Inverse problems: basics. Theory and Applications in Geophysics: Birkhäuser Basel.  https://doi.org/10.1007/978-3-319-48384-9.
  18. Roy, K.K. (2008). Analytical continuation of potential field. In Potential theory in applied geophysics (pp. 535–560). Berlin Heidelberg: Springer.  https://doi.org/10.1007/978-3-540-72334-9_16.
  19. Sampietro, D., Capponi, M., Mansi, A. H., Gatti, A., Marchetti, P., & Sansó, F. (2017). Space-wise approach for airborne gravity data modelling. Journal of Geodesy, 91(5), 535–545.  https://doi.org/10.1007/s00190-016-0981-y.CrossRefGoogle Scholar
  20. Sampietro, D., Capponi, M., Triglione, D., Mansi, A. H., Marchetti, P., & Sansó, F. (2016). GTE: a new software for gravitational terrain effect computation: theory and performances. Pure and Applied Geophysics, 173(7), 24352453.  https://doi.org/10.1007/s00024-016-1265-4.CrossRefGoogle Scholar
  21. Sansó, F., & Sideris, M. G. (2013). Geoid determination: theory and methods. Berlin Heidelberg: Springer.  https://doi.org/10.1007/978-3-540-74700-0.CrossRefGoogle Scholar
  22. Sansó, F., & Sideris, M. G. (2017). Geodetic boundary value problem: the equivalence between Molodensky’s and Helmert’s Solutions. Berlin: Springer International Publishing.  https://doi.org/10.1007/978-3-319-46358-2.CrossRefGoogle Scholar
  23. Sebera, J., Pitoňák, M., Hamáčková, E., & Novák, P. (2015). Comparative study of the spherical downward continuation. Surveys in Geophysics, 36(2), 253–267.  https://doi.org/10.1007/s10712-014-9312-0.CrossRefGoogle Scholar
  24. Sebera, J., Šprlák, M., Novák, P., Bezděk, A., & Val’ko, M. (2014). Iterative spherical downward continuation applied to magnetic and gravitational data from satellite. Surveys in Geophysics, 35(4), 941–958.  https://doi.org/10.1007/s10712-014-9285-z.CrossRefGoogle Scholar
  25. Somigliana, C. (1929). Teoria generale del campo gravitazionale dell’ellissoide di rotazione. Memorie della Societ Astronomica Italiana, 4, 425.Google Scholar
  26. Tikhonov, A. N., & Arsenin, V. I. (1977). Solutions of ill-posed problems (Vol. 14). Washington, DC: Winston. ISBN 9780470991244.Google Scholar
  27. Wieczorek, M. A., & Simons, F. J. (2005). Localized spectral analysis on the sphere. Geophysical Journal International, 162(3), 655–675.  https://doi.org/10.1111/j.1365-246X.2005.02687.x.CrossRefGoogle Scholar
  28. Zhdanov, M. S. (1988). Integral transforms in geophysics. Berlin: Springer.  https://doi.org/10.1007/978-3-642-72628-6.. ISBN:9783642726286.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.DICA, Politecnico di MilanoMilanItaly
  2. 2.DICEA, University of Rome “La Sapienza”RomeItaly
  3. 3.GReD s.r.l. c/o ComoNExTLomazzoItaly

Personalised recommendations