Skip to main content
Log in

Overpressure and Fluid Diffusion Causing Non-hydrological Transient GNSS Displacements

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

In this work, global navigation satellite system (GNSS) observations from the northern tip of the Adria microplate are analysed to differentiate non-periodic (transient) tectonic signals from other deviations from the linear trends primarily due to hydrological loading effects. We tested a recently proposed hypothesis that a porosity wave generated by fault-valve mechanisms in a seismogenic fault in the Bovec basin (western Slovenia) propagated throughout the surrounding region. After excluding potential spatially correlated common-mode errors in the considered time series, we investigated the relationship between the GNSS observations and periodic hydrological loading variations. The tests demonstrated that subtracting the hydrological term was effective at the global scale and that the frequency band of the transient signal (1.5 < T < 3.5 years) was not correlated with hydrological effects at the local scale (within a few kilometres of the station). Next, the results of previous works are used to calculate the permeability values and pore-pressure state at the source of the transient signal. The permeability values for the four main rock formations in the region are consistent with independent observations for similar lithotypes. The ratio between the effective stress and lithostatic load for different vertical profiles in the Bovec area indicated a state of overpressure, with pore-pressure close to the value of the lithostatic load. Thus, our results help define a scenario in which the porosity wave could have originated. Indeed, the formation of the domains of interconnected fractures, such as during the formation of a porosity wave, increases the permeability values, thereby relieving overpressure and restoring a state of equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agnew, D. C. (2001). Map projections to show the possible effects of surface loading. Journal of the Geodetic Society of Japan, 47, 255–260. https://doi.org/10.11366/sokuchi1954.47.255.

    Google Scholar 

  • Argus, D. F., Fu, Y., & Landerer, F. W. (2014). Seasonal variation in total water storage in California inferred from GPS observations on vertical land motion. Geophysical Research Letters, 41, 1971–1980. https://doi.org/10.1002/2014GL059570.

    Article  Google Scholar 

  • Battaglia, M., Zuliani, D., Pascutti, D., Michelini, A., Marson, I., Murray, M. H., et al. (2003). Network assesses earthquake potential in Italy’s Southern Alps. Eos Transactions AGU, 84, 262–264. https://doi.org/10.1029/2003EO2800032003.

    Article  Google Scholar 

  • Bennet, R. A. (2008). Instantaneous deformation from continuous GPS: contributions from quasi-periodic loads. Geophysical Journal International, 174, 1052–1064. https://doi.org/10.1111/j.1365-246X.2008.03846.x.

    Article  Google Scholar 

  • Blewitt, G., & Lavallée, D. (2002). Effect of annual signals on geodetic velocity. Journal of Geophysical Research, 107(B7), ETG 9-1–ETG 9-11. https://doi.org/10.1029/2001JB000570.

    Article  Google Scholar 

  • Böhm, G., Rossi, G., & Vesnaver, A. (1999). Minimum-time ray-tracing for 3-D irregular grids. Journal of Seismic Exploration, 8, 117–131.

    Google Scholar 

  • Bonafede, M., Boschi, E., & Dragoni, M. (1983). Viscoelastic stress relaxation on deep fault sections as possible source of very long period elastic waves. Journal of Geophysical Research, 88, 2251–2260. https://doi.org/10.1029/JB088iB03p02251.

    Article  Google Scholar 

  • Braitenberg, C., Romeo, G., Taccetti, Q., & Nagy, I. (2006). The very broad-band long-base tiltmeters of Grotta Gigante (Trieste, Italy): secular term tilting and the great Sumatra–Andaman Islands earthquake of December 26, 2004. Journal of Geodynamics, 41, 164–174. https://doi.org/10.1016/j.jog.2005.08.015.

    Article  Google Scholar 

  • Braitenberg, C., & Zadro, M. (1999). The Grotta Gigante horizontal pendulums—instrumentation and observations. Bollettino di Geofisica Teorica e Applicata, 40(3/4), 577–582.

    Google Scholar 

  • Brauchler, R., Böhm, G., Leven, C., Dietrich, P., & Sauter, M. (2013). A laboratory study of tracer tomography. Hydrogeology Journal, 21(6), 1265–1274. https://doi.org/10.1007/s10040-013-1006-z.

    Article  Google Scholar 

  • Bressan, G., Gentile, G. F., Tondi, R., De Franco, R., & Urban, S. (2012). Sequential Integrated Inversion of tomographic images and gravity data: an application to the Friuli area (north-eastern Italy). Bollettino di Geofisica Teorica ed Applicata, 53, 191–212. https://doi.org/10.4430/bgta0059.

    Google Scholar 

  • Bressan, G., Ponton, M., Rossi, G., & Urban, S. (2016). Spatial organization of seismicity and fracture pattern in NE-Italy and W-Slovenia. Journal of Seismology, 20(I2), 511–534. https://doi.org/10.1007/s10950-015-9541-9.

    Article  Google Scholar 

  • Calvo, J. C. (1986). An evaluation of Thornthwaite water-balance technique in predicting stream runoff in Costa-Rica. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques, 31(1), 51–60. https://doi.org/10.1080/02626668609491027.

    Article  Google Scholar 

  • Ceschia, M., Micheletti, S., & Carniel, R. (1991). Rainfall over Friuli-Venezia Giulia: high amounts and strong geographical gradients. Theoretical and Applied Climatology, 43, 175–180. https://doi.org/10.1007/BF00867452.

    Article  Google Scholar 

  • Chamoli, A., Lowry, A. R., & Jeppson, T. N. (2014). Implications of transient deformation in the northern Basin and Range, western United States. Journal of Geophysical Research Solid Earth, 119, 4393–4413. https://doi.org/10.1002/2013JB010605.

    Article  Google Scholar 

  • Chanard, K., Avouac, J. P., Ramillien, G., & Genrich, J. (2014). Modeling deformation induced by seasonal variations of continental water in the Himalaya region: sensitivity to Earth elastic structure. Journal of Geophysical Research, Solid Earth, 119(6), 5097–5113. https://doi.org/10.1002/2013JB010451.

    Article  Google Scholar 

  • Chiaruttini, C., & Zadro, M. (1976). Horizontal pendulum observations at Trieste. Bollettino di Geofisica Teorica e Applicata, 19, 441–455.

    Google Scholar 

  • Cimolino, A., Della Vedova, B., Nicolich, R., Barison, E., & Brancatelli, G. (2010). New evidence of the outer Dinaric deformation front in the Grado area (NE-Italy). Rendiconti Lincei, 21(1), 167–179. https://doi.org/10.1007/s12210-010-0096-y.

    Article  Google Scholar 

  • Connolly, J. A. D., & Podladchikov, Y. Y. (1998). Compaction driven fluid flow in viscoelastic rock. Geodinamica Acta, 11, 55–84. https://doi.org/10.1016/S0985-3111(98)80006-5.

    Article  Google Scholar 

  • Connolly, J. A. D., & Podladchikov, Y. Y. (2000). Temperature-dependent viscoelastic compaction and compartmentalization in sedimentary basins. Tectonophysics, 324, 137–168. https://doi.org/10.1016/S0040-1951(00)00084-6.

    Article  Google Scholar 

  • Connolly, J. A. D., & Podladchikov, Y. Y. (2013). Metasomatism and the chemical transformation of rock (599–658), Lecture Notes in Earth System Sciences. In D. E. Harlov & H. Austrheim (Eds.), A Hydromechanical model for lower crustal fluid flow. Berlin: Springer. https://doi.org/10.1007/978-3-642-28394-9_14.

    Chapter  Google Scholar 

  • D’Agostino, N., Cheloni, D., Mantenuto, S., Selvaggi, G., Michelini, A., & Zuliani, D. (2005). Strain accumulation in the southern Alps (NE Italy) and deformation at the northeastern boundary of Adria observed by CGPS measurements. Geophysical Research Letters, 32, L19306. https://doi.org/10.1029/2005GL024266.

    Google Scholar 

  • Devoti, R., Esposito, A., Pietrantonio, G., Pisani, A. R., & Riguzzi, F. (2011). Evidence of large scale deformation patterns from GPS data in the Italian subduction boundary. Earth and Planetary Science Letters, 311(3–4), 230–241. https://doi.org/10.1016/j.epsl.2011.09.034.

    Article  Google Scholar 

  • Devoti, R., Zuliani, D., Braitenberg, C., Fabris, P., & Grillo, B. (2015). Hydrologically induced slope deformations detected by GPS and clinometric surveys in the Cansiglio Plateau, southern Alps. Earth and Planetary Science Letters, 419, 134–142. https://doi.org/10.1016/j.epsl.2015.03.023.

    Article  Google Scholar 

  • Dill, R., & Dobslaw, H. (2013). Numerical simulations of global-scale high-resolution hydrological crustal deformations. Journal of Geophysical Research, Solid Earth, 118, 5008–5017. https://doi.org/10.1002/jgrb.50353.

    Article  Google Scholar 

  • Doan, M. L., Brodsky, E. E., Kano, Y., & Ma, K. F. (2006). In situ measurement of the hydraulic diffusivity of the active Chelungpu Fault, Taiwan. Geophysical Research Letters, 33, L16317. https://doi.org/10.1029/2006GL026889.

    Article  Google Scholar 

  • Dong, D., Fang, P., Bock, Y., Cheng, M. K., & Miyazaki, S. (2002). Anatomy of apparent seasonal variations from GPS-derived site position time series. Journal of Geophysical Research, 107, ETG 9-1–ETG 9-16. https://doi.org/10.1029/2001JB000573.

    Article  Google Scholar 

  • Faccenda, M., Bressan, G., & Burlini, L. (2007). Seismic properties of the upper crust in the central Friuli area (northeastern Italy) based on petrophysical data. Tectonophysics, 445(3–4), 210–226. https://doi.org/10.1016/j.tecto.2007.08.004.

    Article  Google Scholar 

  • Feng, L., & Newman, A. V. (2009). Constraints on continued episodic inflation at Long Valley Caldera, based on seismic and geodetic observations. Journal of Geophysical Research, 114, B06403. https://doi.org/10.1029/2008JB006240.

    Google Scholar 

  • Fu, Y., Argus, D. F., & Landerer, F. W. (2014). GPS as an independent measurement to estimate terrestrial water storage variations in Washington and Oregon. Journal of Geophysical Research, 120, 552–566. https://doi.org/10.1002/2014JB011415.

    Google Scholar 

  • Giorgioni, M., Iannace, A., D’Amore, M., Dati, F., Galluccio, L., Guerriero, V., et al. (2016). Impact of early dolomitization on multi-scale petrophysical heterogeneities and fracture intensity of low-porosity platform carbonates (Albian-Cenomanian, southern Apennines, Italy). Marine and Petroleum Geology, 73, 462–478. https://doi.org/10.1016/j.marpetgeo.2016.03.011.

    Article  Google Scholar 

  • Hawle, H., Kratochvil, H., Schmied, H., & Wieseneder, H. (1967). Reservoir geology of the carbonate oil and gas reservoir of the Vienna basin. Proceedings of Seventh World Petroleum Congress, 2–9 April, Mexico City, Mexico, 2, 371–395.

    Google Scholar 

  • Hubbert, M. K., & Rubey, W. W. (1959). Mechanics of fluid filled porous solids and its application to overthrust faulting. Role of fluid pressure in mechanics of overthrust faulting. Bulletin of the Geological Society of America, 70, 115–166. https://doi.org/10.1130/0016-7606(1959)70[115:ROFPIM]2.0.CO;2.

  • Joshi, A., & Appold, M. S. (2017). Numerical modelling of porosity waves in the Nankai accretionary wedge décollement, Japan: implications for aseismic slip. Hydrogeologic Journal, 25, 249–264. https://doi.org/10.1007/s10040-016-1479-7.

    Article  Google Scholar 

  • Kannan, N., Santhi, C., Williams, J. R., & Arnold, J. G. (2008). Development of a continuous soil moisture accounting procedure for curve number methodology and its behaviour with different evapotranspiration methods. Hydrological Processes, 22, 2114–2121. https://doi.org/10.1002/hyp.6811.

    Article  Google Scholar 

  • Kastelic, V., Vrabec, M., Cunningham, D., & Gosar, A. (2008). Neo-Alpine structural evolution and present-day tectonic activity of the eastern Southern Alps: the case of the Ravne Fault, NW Slovenia. Journal of Structural Geology, 30, 963–975. https://doi.org/10.1016/j.jsg.2008.03.009.

    Article  Google Scholar 

  • Landerer, F. W., & Swenson, S. C. (2012). Accuracy of scaled GRACE terrestrial water storage estimates. Water Resources Research, 48, W04531. https://doi.org/10.1029/2011WR011453.

    Article  Google Scholar 

  • Llubes, M., Florsch, N., Hinderer, J., Longuevergne, L., & Amalvict, M. (2004). Local hydrology, the Global Geodynamics Project and CHAMP/GRACE perspective: some cases studies. Journal of Geodynamics, 38, 355–374. https://doi.org/10.1016/j.jog.2004.07.015.

    Article  Google Scholar 

  • Longuevergne, L., Boudin, F., Boy, J.P., Oudin, L., Florsch, N., Vincent, T. & Kammenthaler, M. (2009). Physical modelling to remove hydrological effects at local and regional scale: application to the 100-m hydrostatic inclinometer in Sainte-Croix-aux-Mines (France). IUGG—Observing our Changing Earth, 2007, Perugia, Italy, 133 (3), 533–539, doi:https://doi.org/10.1007/978-3-540-85426-563.

  • Lupi, M., Geiger, S., & Graham, C. M. (2011). Numerical simulations of seismicity-induced fluid flow in the Tjörnes Fracture Zone, Iceland. Journal of Geophysical Research, 116, B07101. https://doi.org/10.1029/2010JB007732.

    Article  Google Scholar 

  • Martelli, G., & Granati, G. (2006). The confined aquifer system of Friuli Plain (North Eastern Italy): analysis of sustainable groundwater use. Giornale di Geologia Applicata, 3, 59–67. https://doi.org/10.1474/GGA.2006-03.0-08.0101.

    Google Scholar 

  • Moratto, L., Suhadolc, P., & Costa, G. (2012). Finite-fault parameters of the September 1976 M > 5 aftershocks in Friuli (NE Italy). Tectonophysics, 536–537, 44–60. https://doi.org/10.1016/j.tecto.2012.02.002.

    Article  Google Scholar 

  • Natale, G., & Salusti, E. (1996). Transient solutions for temperature and pressure waves in fluid-saturated porous rocks. Geophysical Journal International, 124, 649–656. https://doi.org/10.1111/j.1365-246X.1996.tb05630.

    Article  Google Scholar 

  • Neuzil, C. E. (1995). Abnormal pressures as hydrodynamic phenomena. American Journal of Science, 295, 742–786.

    Article  Google Scholar 

  • Rajner, M., & Liwosz, T. (2011). Studies of crustal deformation due to hydrological loading on GPS height estimates. Geodesy and Cartography, 60(2), 135–144. https://doi.org/10.2478/v10277-012-0012-y.

    Article  Google Scholar 

  • Revil, A., & Cathles, L. M., III. (2002). Fluid transport by solitary waves along growing faults. A field example from the South Eugene Island basin, Gulf of Mexico. Earth and Planetary Sciences Letters, 202, 321–335. https://doi.org/10.1016/S0012-821X(02)00784-7.

    Article  Google Scholar 

  • Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C.-J., et al. (2004). The Global Land Data Assimilation System. Bulletin of the American Meteorological Society, 85(3), 381–394. https://doi.org/10.1175/BAMS-85-3-381.

    Article  Google Scholar 

  • Rossi, G., & Zadro, M. (1996). Long-term crustal deformations in NE-Italy revealed by tilt-strain gauges. Physics of the Earth and Planetary Interiors, 97, 55–70. https://doi.org/10.1016/0031-9201(96)03166-4.

    Article  Google Scholar 

  • Rossi, G., Zuliani, D., & Fabris, P. (2016). Long-term GNSS measurements through Northern Adria microplate reveal fault-induced fluid mobilization. Tectonophysics, 690, 142–159. https://doi.org/10.1016/j.tecto.2016.04.031.

    Article  Google Scholar 

  • Rossi, G., Zuliani, D., & Fabris, P. (2017). Corrigendum to: ‘Long-term GNSS measurements through Northern Adria microplate reveal fault-induced fluid mobilization’. Tectonophysics, 694, 486–487. https://doi.org/10.1016/j.tecto.2016.10.035.

    Article  Google Scholar 

  • Serpelloni, E., Faccenna, C., Spada, G., Dong, D., & Williams, S. D. P. (2013). Vertical GPS ground motion rates in the Euro-Mediterranean region: new evidence of velocity gradients at different spatial scales along the Nubia-Eurasia plate boundary. Journal of Geophysical Research, Solid Earth, 118, 6003–6024. https://doi.org/10.1002/2013JB010102.

    Article  Google Scholar 

  • Shapiro, S. A., Rothert, E., Rath, V. & Rindschwentner, J. (2002). Characterization of fluid transport properties of reservoirs using induced microseismicity. Geophysics, 67, Special section—Seismic signatures of fluid transport, 212–220, doi:https://doi.org/10.1190/1.1451597.

  • Sibson, R. H. (1992). Implications of fault-valve behaviour for rupture nucleation and recurrence. Tectonophysics, 211, 283–293. https://doi.org/10.1016/0040-1951(92)90065-E.

    Article  Google Scholar 

  • Sibson, R. H., & Rowland, J. V. (2003). Stress, fluid pressure and structural permeability in seismogenic crust, North Island, New Zealand. Geophysical Journal International, 154, 584–594. https://doi.org/10.1046/j.1365-246X.2003.01965.x.

    Article  Google Scholar 

  • Silverii, F., D’Agostino, N., Métois, M., Fiorillo, F. & Ventafridda, G. (2016). Transient deformation of karst aquifers due to seasonal and multi-year groundwater variations observed by GPS in Southern Apennines (Italy). Journal of Geophysical Research, Solid Earth, 121, 8315–8337, doi. https://doi.org/10.1002/2016JB013361.

  • Simpson, D. W., Leith, W. S., & Scholz, C. H. (1988). Two types of reservoir-induced seismicity. Bulletin of the Seismological Society of America, 78, 2025–2040.

    Google Scholar 

  • Skarbek, R. M., & Rempel, A. W. (2016). Dehydration-induced porosity waves and episodic tremor and slip. Geochemistry, Geophysics, Geosystems, 17, 442–469. https://doi.org/10.1002/2015GC006155.

    Article  Google Scholar 

  • Talwani, P., & Acree, S. (1984). Pore pressure diffusion and the mechanism of reservoir-induced seismicity. Pure and Applied Geophysics, 122, 947–965. https://doi.org/10.1007/BF00876395.

    Article  Google Scholar 

  • Talwani, P., Cobb, J. S., & Schaeffer, M. F. (1999). In situ measurements of hydraulic properties of a shear zone in northwestern South Carolina. Journal of Geophysical Research, 104(B7), 14993–15003. https://doi.org/10.1029/1999JB900059.

    Article  Google Scholar 

  • Tapley, B. D., Bettadpur, S., Ries, J. C., Thompson, P. F., & Watkins, M. M. (2004). GRACE Measurements of Mass Variability in the Earth System. Science, 305(5683), 503–505. https://doi.org/10.1126/science.1099192.

    Article  Google Scholar 

  • Terzaghi, K. (1923). Die Berechnung der Durchlässigkeitsziffer des Tones aus dem Verlauf der hydrodynamischen Spannungserscheinungen. Sitzungber. Akademie der Wissenschaften in Wien. Mathematish-Naturwissenschaftiliche Klasse, 132, 125–138.

  • Thornthwaite, C. W. (1948). An approach toward a rational classification of climate. Geographical Review, 38(1), 55–94.

    Article  Google Scholar 

  • Townend, J., & Zoback, M. D. (2000). How faulting keeps the crust strong. Geology, 28, 399–402. https://doi.org/10.1130/0091-7613(2000)28<399:HFKTCS>2.0.CO;2.

    Article  Google Scholar 

  • Tsai, V. C. (2011). A model for seasonal changes in GPS positions and seismic wave speeds due to thermoelastic and hydrologic variations. Journal of Geophysical Research, 116, B04404. https://doi.org/10.1029/2010JB008156.

    Google Scholar 

  • Vardoulakis, I., Stavropoulou, M., & Skjaerstein, A. (1998). Porosity waves in a fluidized sand-column test. Philosophical Transactions of the Royal Society of London A, 356, 2591–2608. https://doi.org/10.1098/rsta.1998.0288.

    Article  Google Scholar 

  • Venturini, S. (2002). Il pozzo Cargnacco 1: un punto di taratura stratigrafica nella pianura friulana. Memorie della Società Geologica Italiana, 57, 11–18.

    Google Scholar 

  • Vesnaver, A., & Böhm, G. (2000). Staggered or adapted grids for seismic tomography? The Leading Edge, 19(9), 944–950. https://doi.org/10.1190/1.1438762.

    Article  Google Scholar 

  • Wahr, J., Khan, S. A., van Dam, T., Liu, L., van Angelen, J. H., van den Broeke, M. R., et al. (2013). The use of GPS horizontals for loading studies, with applications to northern California and southeast Greenland. Journal of Geophysical Research, Solid Earth, 118, 1795–1806. https://doi.org/10.1002/jgrb.50104.

    Article  Google Scholar 

  • Wahr, J., Molenaar, M., & Bryan, F. (1998). Time variability of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. Journal of Geophysical Research, 103(B12), 30205–30229.

    Article  Google Scholar 

  • Wahr, J., Swenson, S., Zlotnicki, V., & Velicogna, I. (2004). Time-variable gravity from GRACE: first results. Geophysical Research Letters, 31, L11501. https://doi.org/10.1029/2004GL019779.

    Article  Google Scholar 

  • Wdowinski, S., Bock, Y., Zhang, J., Fang, P., & Genrich, J. (1997). Southern California Permanent GPS Geodetic Array: spatial filtering of daily positions for estimating coseismic and postseismic displacements induced by the 1992 Landers earthquake. Journal of Geophysical Research, 102(B8), 18057–18070.

    Article  Google Scholar 

  • Weber, J., Vrabec, M., Pavlovčič-Prešeren, P., Dixon, T., Jiang, Y., & Stopar, B. (2010). GPS-derived motion of the Adriatic microplate from Istria Peninsula and Po-Plain sites, and geodynamic implications. Tectonophysics, 483, 214–222. https://doi.org/10.1016/j.tecto.2009.09.001.

    Article  Google Scholar 

  • Wiggins, C., & Spiegelman, M. (1995). Magma migration and magmatic solitary waves in 3-D. Geophysical Research Letters, 22, 1289–1292. https://doi.org/10.1029/95GL00269.

    Article  Google Scholar 

  • Zerbini, S., Matonti, F., Raicich, F., Richter, B., & van Dam, T. (2004). Observing and assessing nontidal ocean loading using ocean, continuous GPS and gravity data in the Adriatic area. Geophysical Research Letters, 31, L23609. https://doi.org/10.1029/2004GL021185.

    Article  Google Scholar 

  • Zerbini, S., Raicich, F., Richter, B., Gorini, V., & Errico, M. (2010). Hydrological signals in height and gravity in Northeastern Italy inferred from principal components analysis. Journal of Geodynamics, 49(3–4), 190–204. https://doi.org/10.1016/j.jog.2009.11.001.

    Article  Google Scholar 

  • Zini, L., Calligaris, C., Treu, F., Iervolino, D. & Lippi, F. (2011). Risorse idriche sotterranee del Friuli Venezia Giulia: sostenibilità dell’attuale utilizzo. EUT edizioni Università di Trieste, ISBN: 9-788883-033148.

  • Zini, L., Calligaris, C., Treu, F., Zavagno, E., Iervolino, D., & Lippi, F. (2013). Groundwater sustainability in the Friuli Plain. AQUA mundi: Am 07058, 041–054. https://doi.org/10.4409/Am-058-13-0051.

    Google Scholar 

  • Zou, R., Freymueller, J. T., Ding, K., Yang, S., & Wang, Q. (2014). Evaluating seasonal loading models and their impact on global and regional reference frame alignment. Journal of Geophysical Research- Solid Earth, 119(2), 1337–1358. https://doi.org/10.1002/2013JB010186.

    Article  Google Scholar 

  • Zuliani, D., Fabris, P. & Rossi, G. (2017). FReDNet: evolution of permanent GNSS receiver system. In: New Advanced GNSS and 3D Spatial Techniques Applications to Civil and Environmental Engineering, Geophysics, Architecture, Archeology and Cultural Heritage, Lecture notes in Geoinformation and Cartography, Cefalo R., Zieliński J., Barbarella, M (Eds) (pp.123–137) Springer, Switzerland.

Download references

Acknowledgements

We dedicate this paper to the memory of our colleague and friend Marco Mucciarelli, who encouraged us in this research. We are indebted to Manuele Faccenda for providing information on the laboratory methods that were used in the rock experiments and Chiara Calligaris for engaging in fruitful discussions and providing data for the hydrological parameters of the studied region. We thank the four anonymous reviewers for their punctual and constructive comments, which helped us improve this manuscript. We thank Giorgio Durì, Michele Bertoni, Elvio Del Negro, and Sandro Urban for their support with the maintenance of the FReDNet GNSS network. FReDNet is managed by the Istituto Nazionale di Oceanografia e di Geofisica Sperimentale-OGS with the support from the Friuli Venezia Giulia Civil Protection and Provincia Autonoma di Trento. We thank OSMER FVG for providing the rainfall and climate data (https://www.osmer.fvg.it/clima/clima_fvg).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuliana Rossi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rossi, G., Fabris, P. & Zuliani, D. Overpressure and Fluid Diffusion Causing Non-hydrological Transient GNSS Displacements. Pure Appl. Geophys. 175, 1869–1888 (2018). https://doi.org/10.1007/s00024-017-1712-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-017-1712-x

Keywords

Navigation