Skip to main content

Observed Changes in Daily Precipitation Extremes at Annual Timescale Over the Eastern Mediterranean During 1961–2012

Abstract

The Eastern Mediterranean is one of the most prominent hot spots of climate change in the world and extreme climatic phenomena in this region such as drought or extreme rainfall events are expected to become more frequent and intense. In this study climate extreme indices recommended by the joint World Meteorological Organization Expert Team on Climate Change Detection and Indices are calculated for daily precipitation data in 70 weather stations during 1961–2012. Observed trends and changes in daily precipitation extremes over the EM basin were analysed using the RClimDex package, which was developed by the Climate Research Branch of the Meteorological Service of Canada. Extreme and heavy precipitation events showed globally a statistically significant decrease in the Eastern Mediterranean and, in the southern parts, a significant decrease in total precipitation. The overall analysis of extreme precipitation indices reveals that decreasing trends are generally more frequent than increasing trends. We found statistically significant decreasing trends (reaching 74% of stations for extremely wet days) and increasing trends (reaching 36% of stations for number of very heavy precipitation days). Finally, most of the extreme precipitation indices have a statistically significant positive correlation with annual precipitation, particularly the number of heavy and very heavy precipitation days.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Aguilar E, Auer I, Brunet M, Peterson T, Wieringa J (2003) Guidelines on climate metadata and homogenization. World Meteorological Organization WMO-TD No. 1186, WCDMP No. 53

  2. Aguilar E., Peterson, T., Ramírez Obando, P., Frutos, R., Retana, J., Solera, M., et al. (2005). Changes in precipitation and temperature extremes in Central America and northern South America, 1961–2003. Journal of Geophysical Research, 110(D23), 107.

  3. Alexander L, Zhang X, Peterson T, Caesar J, Gleason B, Klein Tank A, Haylock M, Collins D, Trewin B, Rahimzadeh F, Tagipour A, Ambenje P, Rupa Kumar K, Revadekar J, Griffiths G, Vincent L, Stephenson D, Burn J, Aguilar E, Brunet M, Taylor M, New M, Zhai P, Rusticucci M, Vazquez Aguirre J (2006) Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research Atmospheres (1984–2012) 111:D5. 

  4. Anttila Hughes, J. (2016). Financial market response to extreme events indicating climatic change. The European Physical Journal, 225, 527–538.

    Google Scholar 

  5. Bartolomeu, S., Carvalho, M., Marta-Almeida, M., Melo-Gonçalves, P., & Rocha, A. (2016). Recent trends of extreme precipitation indices in the Iberian Peninsula using observations and WRF model results. Physics and Chemistry of the Earth Parts A/B/C, 94, 10–21.

    Article  Google Scholar 

  6. Bouaicha, R., & Benabdelfadel, A. (2010). Variabilitét gestion des eaux de surface au Maroc. Sécheresse, 21, 1–5.

    Google Scholar 

  7. Brugnara, Y., Brunetti, M., Maugeri, M., Nanni, T., & Simolo, C. (2012). High-resolution analysis of daily precipitation trends in the central Alps over the last century. International Journal of Climatology, 32, 1406–1422.

    Article  Google Scholar 

  8. Buric, D., Lukovic, J., Bajat, B., Kilibarda, M., & Ducic, V. (2015). Recent trends in daily rainfall extremes over Montenegro (1951–2010). Journal of Natural Hazards and Earth System Science, 3, 2347–2377.

    Google Scholar 

  9. Caesar, J., & Lowe, J. (2012). Comparing the impacts of mitigation versus non-intervention scenarios on future temperature and precipitation extremes in the HadGEM2 climate model. Journal of Geophysical Research, 117(D15), 109.

    Article  Google Scholar 

  10. Campins, J., Aran, M., Genovés, A., & Jansá, A. (2007). High impact weather and cyclones simultaneity in Catalonia. Adv Geosci, 12, 115–120.

    Article  Google Scholar 

  11. Casanueva, A., Rodríguez-Puebla, C., Frías, M., & González-Reviriego, N. (2014). Variability of extreme precipitation over Europe and its relationships with teleconnection patterns. Hydrology and Earth System Sciences, 18, 709–725.

    Article  Google Scholar 

  12. Cid, A., Menéndez, M., Castanedo, S., Abascal, A., Méndez, F., & Medina, R. (2016). Long-term changes in the frequency, intensity and duration of extreme storm surge events in southern Europe. Journal of Climate Dynamics, 46, 1503–1516.

    Article  Google Scholar 

  13. Cid, N., Bonada, N., Carlson, S., Grantham, T., Avital Gasith, A., & Resh, V. (2017). High variability is a defining component of Mediterranean-climate rivers and their biota. Water, 9(52).

    Article  Google Scholar 

  14. Costa, A., & Soares, A. (2009). Trends in extreme precipitation indices derived from a daily rainfall database for the South of Portugal. International Journal of Climatology, 29(13), 1956–1975. 

    Article  Google Scholar 

  15. Coumou, D., & Robinson, A. (2013). Historic and future increase in the global land area affected by monthly heat extremes. Environment Research Letters, 8(034), 018.

    Google Scholar 

  16. Croitoru, A., Piticar, A., & Burada, D. (2016). Changes in precipitation extremes in Romania. Quaternary International, 415, 325–335.

    Article  Google Scholar 

  17. Dayan, U., Nissen, K., & Ulbrich, U. (2015). Review article: Atmospheric conditions inducing extreme precipitation over the eastern and western Mediterranean. Natural Hazards and Earth System Sciences, 15, 2525–2544.

    Article  Google Scholar 

  18. De Lima, M., Espírito Santo, F., Ramos, A., & De Lima, J. (2013). Recent changes in daily precipitation and surface air temperature extremes in mainland portugal, in the period 1941–2007. Atmospheric Research, 27, 195–209.

  19. De Lima, M., Santo, F., Ramos, A., & Trigo, R. (2015). Trends and correlations in annual extreme precipitation indices for mainland Portugal, 1941–2007. Theoretical and Applied Climatology, 119, 55–75.

  20. De Luis, M., Brunetti, M., González-Hidalgo, J., Longares, L., & Martín-Vide, J. (2010). Changes in seasonal precipitation in the Iberian Peninsula during 1946–2005. Global and Planetary Change, 74, 27–33.

    Article  Google Scholar 

  21. DeGaetano, A., & Castellano, C. (2017). Future projections of extreme precipitation intensity-duration frequency curves for climate adaptation planning in New York State. Climate Services, 5, 23–35.

    Article  Google Scholar 

  22. Donat, M., Lowry, A., Alexander, L., O’Gorman, P., & Maher, N. (2016). More extreme precipitation in the world’s dry and wet regions. Nature Climate Change, 6, 508–513. 

    Article  Google Scholar 

  23. Drobinski, P., Alonzo, B., Bastin, S., Da Silva, N., & Muller, C. (2016). Scaling of precipitation extremes with temperature in the French Mediterranean region: What explains the hook shape? Journal of Geophysical Research, 121, 3100–3119. 

    Google Scholar 

  24. Duffourg, F., & Ducrocq, V. (2011). Origin of the moisture feeding the heavy precipitating systems over Southeastern France. Natural Hazards and Earth System Sciences, 11, 1163–1178. 

    Article  Google Scholar 

  25. Ebi, K., & Bowen, K. (2016). Extreme events as sources of health vulnerability: Drought as an example. Weather and Climate Extremes, 11, 95–102.

    Article  Google Scholar 

  26. Frank, D., Reichstein, M., Bahn, M., Thonicke, K., Frank, D., Mahecha, M., et al. (2015). Effects of climate extremes on the terrestrial carbon cycle: Concepts, processes and potential future impacts. Global Change Biology, 21, 2861–2880. 

    Article  Google Scholar 

  27. Fürstenberger, G., & Schumacher, I. (2015). Insurance and climate-driven extreme events. Journal of Economic Dynamics and Control, 54, 59–73.

    Article  Google Scholar 

  28. Gimeno, L., Dominguez, F., Nieto, R., Trigo, R., Drumond, A., Chris, J., et al. (2016). Major mechanisms of atmospheric moisture transport and their role in extreme precipitation events. Annual Review of Environment and Resources, 41, 117–141.

    Article  Google Scholar 

  29. Groisman P, Knight R, Zolina O (2013) Reference module in earth systems and environmental sciences: Climate vulnerability. Understanding and addressing threats to essential resources, Elsevier, chap Recent Trends in Regional and Global Intense Precipitation Patterns, p 25–55. Volume 5: Vulnerability of Water Resources to Climate. 

  30. Hailegeorgis, T., & Alfredsen, K. (2017). Analyses of extreme precipitation and runoff events including uncertainties and reliability in design and management of urban water infrastructure. Journal of Hydrology, 544, 290–305.

    Article  Google Scholar 

  31. Hamed, K., & Rao, A. (1998). A modified Mann Kendall trend test for autocorrelated data. Jornal of Hydrology, 204, 182–196.

    Article  Google Scholar 

  32. Hasson, S., Bohner, J., & Lucarina, V. (2017). Prevailing climatic trends and runoff response from Hindukush-Karakoram-Himalaya, upper Indus Basin. Earth System Dynamics, 8, 337–355.

    Article  Google Scholar 

  33. Haylock, M., & Goodess, C. (2004). Interannual variability of European extreme winter rainfall and links with mean large-scale circulation. International Journal of Climatology, 24, 759–776.

    Article  Google Scholar 

  34. Hertig, E., Seubert, S., Paxina, A., Vogt, G., Paeth, H., & Jacobeit, J. (2013). Changes of total versus extreme precipitation and dry periods until the end of the twenty-first century: Statistical assessments for the Mediterranean area. Theoretical and Applied Climatology, 111, 1–20.

    Article  Google Scholar 

  35. Hertig, E., Seubert, S., Paxina, A., Vogt, G., Paeth, H., & Jacobeit, J. (2014). Statistical modelling of extreme precipitation indices for the Mediterranean area under future climate change. International Journal of Climatology, 34, 1132–1156. 

    Article  Google Scholar 

  36. Hoerling, M., Eischeid, J., Perlwitz, J., Quan, X., Zhang, T., & Pegion, P. (2012). On the increased frequency of Mediterranean drought. Journal of Climate, 25, 2146–2161. 

    Article  Google Scholar 

  37. Ingram, W. (2016). Extreme precipitation increases all round. Nature Climate Change, 6, 443–444.

    Article  Google Scholar 

  38. Jakob, D., & Walland, D. (2016). Variability and long-term change in Australian temperature and precipitation extremes. Weather and Climate Extremes, 14, 36–55.

    Article  Google Scholar 

  39. Jiang, C., Shaw, K., Upperman, C., Blythe, D., Mitchell, C., Murtugudde, R., et al. (2015). Climate change, extreme events and increased risk of salmonellosis in Maryland, USA: Evidence for coastal vulnerability. Environment International, 83, 58–62.

    Article  Google Scholar 

  40. Jiang, R., Xie, J., Zhao, Y., He, H., & He, G. (2016). Spatiotemporal variability of extreme precipitation in Shaanxi province under climate change. Theoritical Applied of Climatology, 130(3–4),831–845.

    Article  Google Scholar 

  41. Kioutsioukis, I., Melas, D., & Zerefos, C. (2010). Statistical assessment of changes in climate extremes over Greece (1955–2002). International Journal of Climatology, 30, 1723–1737.

    Article  Google Scholar 

  42. Klein Tank, A., Wijngaard, J., & van Engelen, A. (2002). Climate of Europe, assessment of observed daily temperature and precipitation extremes. De Bilt: KNMI, De Bilt, Netherlands.

    Google Scholar 

  43. Knippertz, P. (2007). Tropical-extratropical interactions related to upper level troughs at low latitudes. Dynamics of Atmospheres and Oceans, 43, 36–62.

    Article  Google Scholar 

  44. Krichak, S., Kishcha, P., & Alpert, P. (2014). Teleconnection-extreme precipitation relationships over the Mediterranean region. Theoretical and Applied Climatology, 117, 679–692.

    Article  Google Scholar 

  45. Kunkel, K., Karl, T., Easterling, D., Redmond, K., Young, J., Yin, X., et al. (2013). Probable maximum precipitation (PMP) and climate change. Geophysical Research Letters, 40, 1402–1408. 

    Article  Google Scholar 

  46. Lee, K. O., Flamant, C., Ducrocq, V., Duffourg, F., FourriéN, Delanoë J., & Bech, J. (2017). Initiation and development of a mesoscale convective system in the Ebro River Valley and related heavy precipitation over North-Eastern Spain during HyMeX IOP 15a. Quarterly Journal of the Royal Meteorological Society, 143, 942–956. 

    Article  Google Scholar 

  47. Lelieveld, J., Hadjinicolaou, P., Kostopoulou, E., Chenoweth, J., El Maayar, M., Giannakopoulos, C., et al. (2012). Climate change and impacts in the eastern mediterranean and the Middle East. Journal of Climatic Change, 114, 667–687.

    Article  Google Scholar 

  48. Li, Z., Yan, Z., Cao, L., & Jones, P. (2014). Adjusting inhomogeneous daily temperature variability using wavelet analysis. International Journal of Climatology, 34, 1196–1207. 

    Article  Google Scholar 

  49. Liu, W., Zhang, M., Wang, S., Wang, B., Li, F., & Che, Y. (2013). Changes in precipitation extremes over Shaanxi Province, Northwestern China, during 1960–2011. Quaternary International, 313–314, 118–129.

    Article  Google Scholar 

  50. Martín-Vide, J., & López-Bustins, J. (2006). The western Mediterranean oscillation and rainfall in the Iberian Peninsula. International Journal of Climatology, 26, 1455–1475.

    Article  Google Scholar 

  51. Melo-Gonçalves, P., Rocha, A., & Santos, J. (2016). Robust inferences on climate change patterns of precipitation extremes in the Iberian Peninsula. Journal of Physics and Chimistry of the Earth, 94, 114–126.

    Article  Google Scholar 

  52. Menne, M., Durre, I., Vose, R., Gleason, B., & Houston, T. (2012). An overview of the global historical climatology network-daily database. Journal of Atmospheric and Oceanic Technology, 29, 897–910.

    Article  Google Scholar 

  53. Modarres, R., Sarhadi, A., & Burn, D. (2016). Changes of extreme drought and flood events in Iran. Global and Planetary Change, 144, 67–81.

    Article  Google Scholar 

  54. Muñoz, A., Goddard, L., Mason, S., Robertson, A., Kushner, Y., & Baethgen, W. (2015). Cross-timescale interactions and rainfall extreme events in South East South America for the austral summer. Part II: Potential predctors. Journal of Climate, 28, 7894–7913.

    Article  Google Scholar 

  55. Nastos, P., & Zerefos, C. (2009). Spatial and temporal variability of consecutive dry and wet days in Greece. Atmospheric Research, 94, 616–628.

    Article  Google Scholar 

  56. O’Gorman, P. (2015). Precipitation extremes under climate change. Current Climate Change Reports, 1, 49–59.

    Article  Google Scholar 

  57. Oikonomou, C., Flocas, H., Hatzaki, M., Asimakopoulos, D., & Giannakopoulos, C. (2008). Future changes in the occurrence of extreme precipitation events in EM. Glob NEST Journal, 10, 255–262.

    Google Scholar 

  58. Oikonomou, C., Flocas, H., Hatzaki, M., Nisantzi, A., & Asimakopoulos, D. (2010). Relationship of extreme dry spells in em with large-scale circulation. Theoretical and Applied Climatology, 100, 137–151.

    Article  Google Scholar 

  59. Omondi, P., Awange, J., Forootan, E., Ogallo, L., Girmaw, G., Ogallo, L., et al. (2014). Changes in temperature and precipitation extremes over the Greater Horn of Africa region from 1961 to 2010. International Journal of Climatology, 34, 1262–1277.

    Article  Google Scholar 

  60. Philandras, C., Nastos, P., Kapsomenakis, J., Douvis, K., Tselioudis, G., & Zerefos, C. (2011). Long term precipitation trends and variability within the Mediterranean region. Journal of Natural Hazards Earth System, 11, 3235–3250.

    Article  Google Scholar 

  61. Piras, M., Mascaro, G., Roberto Deidda, R., & Vivoni, E. (2016). Impacts of climate change on precipitation and discharge extremes through the use of statistical downscaling approaches in a Mediterranean basin. Journal of Science of the Total Environment, 543, 952–964.

    Article  Google Scholar 

  62. Pisarenko, V., & Rodkin, M. (2017). The estimation of probability of extreme events for small samples. Pure and Applied Geophysics, 174, 1547–1560.

    Article  Google Scholar 

  63. Prasad, P., Thomas, J., & Narayanan, S. (2017). Global warming effects. Encyclopedia of Applied Plant Sciences (Second Edition), 3, 289–299.

    Article  Google Scholar 

  64. R Development Core Team (2016). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  65. Raja, N., Aydin, O., Türkoğlu, N., & +Çiçek I,. (2017). Space-time kriging of precipitation variability in Turkey for the period 1976–2010. Theoretical and Applied Climatology, 129(1–2),293–304.

    Article  Google Scholar 

  66. Ramos, M., & Martínez-Casasnovas, J. (2006). Trends in precipitation concentration and extremes in the Mediterranean Penedés-Anoia Region, NE Spain. Climatic Change, 74, 457–474.

    Article  Google Scholar 

  67. Raveh-Rubin, S., & Wernli, H. (2015). Large-scale wind and precipitation extremes in the Mediterranean—A climatological analysis for 1979–2012. Quarterly Journal of the Royal Meteorological Society, 141, 2404–2417. 

    Article  Google Scholar 

  68. Ray, D., Gerber, J., MacDonald, G., & West, P. (2015). Climate variation explains a third of global crop yield variability. Nature, 6, 5989. 

  69. Reale, M., & Lionello, P. (2013). Synoptic climatology of winter intense precipitation events along the Mediterranean coasts. Natural Hazards and Earth System Sciences, 13, 1707–1722. 

    Article  Google Scholar 

  70. De la Riva, G., Pérez-Ramos, I., Marañón, T., & Díaz-Delgado R, Villar R,. (2017). Climate variability and community stability in Mediterranean shrublands: The role of functional diversity and soil environment. Journal of Ecology, 105,1335–1346.

  71. Rodrigo, F., & Trigo, R. (2007). Trends in daily rainfall in the Iberian Peninsula from 1951 to 2002. International Journal of Climatology, 27, 513–529.

    Article  Google Scholar 

  72. Santo, F., Ramos, A., Lima, M., & Trigo, R. (2014). Seasonal changes in daily precipitation extremes in mainland Portugal from 1941 to 2007. Journal of Regional Environmental Change, 17, 1765–1788.

    Article  Google Scholar 

  73. Seneviratne S, Nicholls N, Easterling D, Goodess C, Kanae S, Kossin J, Luo Y, Marengo J, McInnes K, Rahimi M, Reichstein M, Sorteberg A, Vera C, Zhang X (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC SREX Report), Cambridge University Press, chap Changes in climate extremes and their impacts on the natural physical environment, pp. 109–230

  74. Sensoy S, Turkoglu N, Akcakaya A, Ekici M, Ulupinar Y, Demircan M, Atya H, Tuvan A, Demirbas H (2013) Trends in Turkey climate indices from 1960 to 2010. In: 6th international atmospheric science symposium—ATMOS2013

  75. Shrestha, A., Bajracharya, S., Sharma, A., Duo, C., & Kulkarni, A. (2017). Observed trends and changes in daily temperature and precipitation extremes over the Koshi river basin 1975–2010. International Journal of Climatology, 37, 1066–1083.

    Article  Google Scholar 

  76. Sillmann, J., & Roeckner, E. (2008). Indices of extreme events in projections of anthropogenic climate change. Journal of Climate Change, 86, 83–104.

    Article  Google Scholar 

  77. Sillmann, J., Pozzoli, L., Vignati, E., Kloster, S., & Feichter, J. (2013). Aerosol effect on climate extremes in Europe under different future scenarios. Geophysical Research Letters, 40, 2290–2295.

    Article  Google Scholar 

  78. Silvestro, F., Gabellani, S., Giannoni, F., Parodi, A., Rebora, N., Rudari, R., et al. (2012). A hydrological analysis of the 4th November 2011 event in Genoa. Natural Hazards and Earth System Sciences, 12, 2743–2752. 

    Article  Google Scholar 

  79. Sippel, S., Zscheischler, J., Heimann, M., Lange, H., Mahecha, M., van Oldenborgh, G., et al. (2017). Have precipitation extremes and annual totals been increasing in the world’s dry regions over the last 60 years? Hydrology and Earth System Sciences, 21, 441–458. 

    Article  Google Scholar 

  80. Strzepek, K., Yohe, G., Neumann, J., & Boehlert, B. (2010). Characterizing changes in drought risk for the United States from climate change. Environmental Research Letters, 5(044), 012.

    Google Scholar 

  81. Tramblay, Y., El Adlouni, S., & Servat, E. (2013). Trends and variability in extreme precipitation indices over Maghreb countries. Natural Hazards and Earth System Sciences, 13, 3235–3248.

    Article  Google Scholar 

  82. Trenberth, K. (2011). Changes in precipitation with climate change. Climate Research, 47, 123–138.

    Article  Google Scholar 

  83. Vallebona, C., Pellegrino, E., Frumento, P., & Bonari, E. (2014). Temporal trends in extreme rainfall intensity and erosivity in the Mediterranean region: a case study in southern Tuscany, Italy. Climatic Change, 128, 139–151.

    Article  Google Scholar 

  84. Wang, H., Chen, Y., & Chen, Z. (2013a). Spatial distribution and temporal trends of mean precipitation and extremes in the arid region, northwest of China, during 1960–2010. Hydrol Process, 27, 1807–1818.

    Article  Google Scholar 

  85. Wang, H., Shao, Z., Gao, T., Zou, T., Liu, J., & Yuan, H. (2017). Extreme precipitation event over the Yellow Sea western coast: Is there a trend? Quaternary International, 441, 1–17.

    Article  Google Scholar 

  86. Wang, W., Xing, W., Yang, T., Shao, Q., Peng, S., Yong, Yu Z, et al. (2013b). Characterizing the changing behaviours of precipitation concentration in the Yangtze River Basin, China. Journal of Hydrological Process, 27, 3375–3393.

    Article  Google Scholar 

  87. Wang, X., Feng, Y. (2013) RHtests_dlyPrcp user manual. http://etccdi.pacificclimate.org/software.shtml

  88. Wang, X., & Liu, Y. (2017). Causes of extreme rainfall in May 2013 over Henan Province: The role of the southwest vortex and low-level jet. Theoritical Applied and Climatlogy, 129, 701–709.

    Article  Google Scholar 

  89. Wang, Y., Xu, Y., Lei, C., Li, G., Han, L., Song, S., et al. (2016). Spatio-temporal characteristics of precipitation and dryness/wetness in Yangtze River Delta, eastern China, during 1960–2012. Atmospheric Research, 172, 196–205.

    Article  Google Scholar 

  90. Wei, Y., Mi, Z., & Huang, Z. (2015). Climate policy modeling: An online SCI-E and SSCI based literature review. Omega, 57, 70–84.

    Article  Google Scholar 

  91. Woodward, G., Bonada, N., Brown, L., Death, R., Durance, I., Gray, C., et al. (2016). The effects of climatic fluctuations and extreme events on running water ecosystems. Philosophical Transactions of The Royal Society B, 371(20150274). https://doi.org/10.1098/rstb.2015.0274.

    Article  Google Scholar 

  92. Zhang, H., Wang, Y., Won Park, T., & Deng, Y. (2017). Quantifying the relationship between extreme air pollution events and extreme weather events. Atmosheric Research, 188, 64–79.

    Article  Google Scholar 

  93. Zhang, J., Shen, X., & Wang, B. (2015). Changes in precipitation extremes in Southeastern Tibet, China. Journal of Quaternary International, 380–381, 49–59.

    Article  Google Scholar 

  94. Zhang X, Yang F (2004) RClimDex (1.0) User Guide. Climate Research Branch Environment Canada, Downsview (Ontario, Canada) p. 22.

  95. Zittis G, Hadjinicolaou P, Bruggeman A, Camera C, Lelieveld J (2017) Perspectives on atmospheric sciences, Springer Atmospheric Sciences. Springer, Cham., chap High-resolution simulations of recent past extreme precipitation events over Cyprus, pp. 483–489

    Google Scholar 

Download references

Acknowledgements

This study was achieved within the framework of Climatology Group of the University of Barcelona (2014 SGR 300, Catalonia Regional Govt) and the WEMOTOR (CSO2014-55799-C2-1-R) and (CGL2015-65627-C3-2-R) Spanish Ministry of Economy, Industry and Competitiveness projects. The first author is supported by a grant of ERASMUS MUNDUS (AVEMPACE mobility scheme III). Unpublished meteorological data were obtained by contacting the regional National Hydrological and Meteorological Services. The Syrian Meteorological Agency, Lebanon weather Agency, Jordan Weather Forecast, Israel Government Portal, (The Governmental Database) and Israel Meteorological Service, Hellenic National Meteorological Service in Greece, Turkish State Meteorological Service, and Ministry of Agriculture, Rural Development and Environment in Cyprus.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Mathbout.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mathbout, S., Lopez-Bustins, J.A., Royé, D. et al. Observed Changes in Daily Precipitation Extremes at Annual Timescale Over the Eastern Mediterranean During 1961–2012. Pure Appl. Geophys. 175, 3875–3890 (2018). https://doi.org/10.1007/s00024-017-1695-7

Download citation

Keywords

  • Eastern Mediterranean
  • extreme precipitation
  • trend
  • spatial
  • temporal distribution