The Miocene Roof Mapping Using Microtremor Recording and Electrical Survey Method in Blida City, Algeria

Abstract

Bedrock depths in the Mitidja basin in general and in the Blida region in particular are still poorly known despite, the existence of some relatively deep hydraulic boreholes that intersect only superficial alluvial formations. To assess the seismic risk of Blida town, knowledge of soil amplification requires the thickness and properties of sedimentary formations that cover the substratum. For the purposes of our study, the thicknesses obtained by the vertical electric soundings, carried out in the hydrogeological study of the basin, were combined with horizontal-to-vertical spectral ratio (HVSR) microtremor recordings. This combination made it possible to determine an empirical relationship between frequency and thickness specific to the Blida site area, which enabled the roof of the Miocene to be mapped and shows slight undulations with directions compatible with the tectonic constraints of the region. The boundaries between the low and high frequencies obtained by HVSR are well materialized, at south by Sidi El Kebir river, at west by Chiffa river and in the central part by a line of direction SE–NW corresponding to the old passage of Sidi El Kebir river. The presence of low frequencies attributed to the old alluvial deposits with significant thicknesses that originate just after Sidi El Kebir river confirms that the South Mitidjian contact is subvertical.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Bard, P. Y. (1995). Effects of surface geology on ground motion: Recent results and remaining issues. In 10th European Conference on Earthquake Engineering, Vienna, vol. 1, pp. 305–323.

  2. Bard, P. Y., & Bouchon, M. (1985). The two dimensional resonance of sediment filled valleys. Bulletin of the Seismological Society of America, 75(2), 519–541.

    Google Scholar 

  3. Bard, P. Y., Kristek, J., Moczo, P., & Riepl-Thomas, J. (1999). Finite difference modeling of site-effects in the Grenoble basin. In Abstract of the IUGG 99, Birmingham, England, July 26–30.

  4. Bensalem, R., Chatelain, J. L., Machane, D., Oubaiche, E. H., Bouchelouh, A., Benkaci, N., et al. (2017). Mediterranean Sea and anthropogenic influences on ambient vibration amplitudes in the low-frequency and high-frequency domains in the Algiers region. Arabian Journal of Geosciences, 10, 282. doi:10.1007/s12517-017-3065-2.

    Article  Google Scholar 

  5. Bensalem, R., Chatelain, J. L., Machane, D., Oubaiche, E. H., Hellel, M., Guillier, B., et al. (2010). Ambient vibration techniques applied to explain heavy damages caused in Corso (Algeria) by the 2003 Boumerdes earthquake: Understanding seismic amplification due to gentle slopes. Seismological Research Letters, 81, 928–940. doi:10.1785/gssrl.81.6.928.

    Article  Google Scholar 

  6. Bonnefoy-Claudet, S. (2004). Nature du bruit de fond sismique: Implication pour les effets de site. PhD Thesis, Joseph Fourier University, Grenoble (France).

  7. Bonnefoy-Claudet, S., Köhler, A., Cornou, C., Wathelet, M., & Bard, P. Y. (2008). Effects of Love waves on microtremor H/V ratio. Bulletin of the Seismological Society of America, 98, 288–300.

    Article  Google Scholar 

  8. Bonneton, J. R. (1977). Géologie de la zone de contact entre la Mitidja et l’Atlas de Blida au sud d’Alger. PhD thesis, 3 éme cycle, Univ. Pierre et Marie Curie, Paris.

  9. Bonneton, J. R., & Truillet, R. (1979). Mise en évidence dans la plainede la Mitidja d’accidents profonds. Conséquence hydrologique et pédologique (Algérie septentrionale). C. R. Somm. Soc. Geol, France, 1, 23–25. (in French).

    Google Scholar 

  10. Bour, M., Fouissac, D., Dominique, P., & Martin, C. (1998). One the use of microtremor recordings in seismic microzonation. Soil Dynamics and Earthquake Engineering, 17, 465–474.

    Article  Google Scholar 

  11. Bourdeau, C., & Fleurisson, J. A. (2003). Modelled effects of topography on ground motion. Sixiéme Colloque National AFPS (Abstract #1569).

  12. C.G.G (Compagnie générale de géophysique). (1967). Étude par prospection électrique dans la plaine de la Mitidja et du Hamiz. Unpub. Report.

  13. Chatelain, J. L., Gueguen, P., Guillier, B., Frechet, J., Bondoux, F., Sarrault, J., et al. (2000). CityShark, a user-friendly instrument dedicated to ambient noise (microtremor) recording for site and building response. Seismological Research Letters, 71(6), 698–703. doi:10.1785/gssrl.71.6.698.

    Article  Google Scholar 

  14. Chatelain, J. L., Guillier, B., Cara, F., Duval, A. M., Atakan, K., Bard, P. Y., et al. (2008). Evaluation of the influence of experimental conditions on H/V results from ambient noise recordings. Bulletin of Earthquake Engineering, 6(1), 33–74. doi:10.1007/s10518-007-9040-7.

    Article  Google Scholar 

  15. Chatelain, J. L., Guillier, B., Guéguen, P., Fréchet, J., & Sarrault, J. (2012). Ambient vibration recording for single-station, array and building studies made simple: CityShark II. International Journal of Geosciences. doi:10.4236/ijg.2012.326118.

    Google Scholar 

  16. Cheikh Lounis, G., Mimouni, O., Machane, D., & Bacha, A. (2017). The El Achour (Algiers, Algeria) landslide delimitation using the H/V ambient vibration method. Arabian Journal of Geosciences, 10, 398. doi:10.1007/s12517-017-3175-x.

    Article  Google Scholar 

  17. D’Amico, V., Picozzi, M., & Albarello, D. (2008). Ambient noise measurements for preliminary site-effects characterization in the urban area of Florence, Italy. Bulletin of the Seismological Society of America, 98(3), 1373–1388. doi:10.1785/0120070231.

    Article  Google Scholar 

  18. D’Amico, V., Picozzi, M., Albarello, D., Naso, G., & Tropenscovino, S. (2004). Quick estimates of soft sediment thicknesses from ambient noise horizontal to vertical spectral ratios: A case study in southern Italy. Journal of Earthquake Engineering, 8(6), 895–908. doi:10.1142/S1363246904001729.

    Google Scholar 

  19. Delgado, J., Lopez Casado, C., Estevez, A. C., Giner, J., Cuenca, A., & Molina, S. (2000a). Mapping soft soils in the Segura river valley (SE Spain): A case study of microtremors as an exploration tool. Journal of Applied Geophysics, 45, 19–32. doi:10.1016/S0926-9851(00)00016-1.

    Article  Google Scholar 

  20. Delgado, J., Lopez Casado, C., Giner, J., Estevez, A., Cuenca, A., & Molina, S. (2000b). Microtremors as a geophysical exploration tool: Applications and limitations. Pure and Applied Geophysics, 157, 1445–1462. doi:10.1007/PL00001128.

    Article  Google Scholar 

  21. Dinesh, B. V., Nair, G. J., Prasad, A. G. V., Nakkeeran, P. V., & Radhakrishna, M. C. (2010). Estimation of sedimentary layers shear wave velocity using micro-tremor H/V ratio measurements for Bangalore City. Soil Dynamics and Earthquake Engineering, 30, 1377–1382. doi:10.1016/j.soildyn.2010.06.012.

    Article  Google Scholar 

  22. Dunand, F., Bard, P. Y., Chatelain, J. L., Guéguen, P. H., Vassail, T. & Farsi, M. N. (2002). Damping and frequency from Randomdec method applied to in situ measurements of ambient vibrations: Evidence for effective soil structure interaction. In Proceedings of the 12th European Conference on Earthquake Engineering, London, September 9–13.

  23. Field, E., & Jacob, K. (1993). The theoretical response of sedimentary layers to ambient seismic noise. Geophysical Research Letters, 20(24), 2925–2928.

    Article  Google Scholar 

  24. Gaffet, S., & Bouchon, M. (1989). Effects of two-dimensional topographies using the discrete wave number-boundary integral equation method in P–SV cases. The Journal of the Acoustical Society of America, 85(6), 2277–2283. doi:10.1121/1.397773.

    Article  Google Scholar 

  25. Garcia-Jerez, A., Luzon, F., Navarro, M., & Perez-Ruiz, A. (2006). Characterization of the sedimentary cover of the Zafarraya basin, southern Spain, by means of ambient noise. Bulletin of the Seismological Society of America, 96(3), 957–967. doi:10.1785/0120050061.

    Article  Google Scholar 

  26. Glangeaud, L. (1932). Etude géologique de la région littorale de la province d’Alger. Phd thesis. Paris et Bull. Serv. Carte géol, Alger, 2éme série, strat, no 8, p. 608.

  27. Glangeaud, L. (1959). Essai de classification géodynamique des chaines et des phénomènes orogéniques, 2. Rev. Géograph. Phys. Géol, Dyn, 2éme série, pp. 197–204.

  28. Gosar, A., & Lenart, A. (2010). Mapping the thickness of sediments in the Ljubljana Moor basin (Slovenia) using microtremors. Bulletin of Earthquake Engineering, 8, 501–518. doi:10.1007/s10518-009-9115-8.

    Article  Google Scholar 

  29. Guéguen, P., Chatelain, J. L., Guillier, B., & Yepes, H. (2000). An indication of the soil top most layer response in Quito (Ecuador) using noise H/V spectral ratio. Soil Dynamics and Earthquake Engineering, 19(2), 127–133. doi:10.1016/S0267-7261(99)00035-4.

    Article  Google Scholar 

  30. Guillier, B., Atakan, K., Chatelain, J. L., Havskov, J., Ohrnberger, M., Cara, F., et al. (2008). Influence of instruments on the H/V spectral ratiosof ambient vibrations. Bulletin of Earthquake Engineering, 6, 3–31. doi:10.1007/s10518-007-9039-0.

    Article  Google Scholar 

  31. Guillier, B., Chatelain, J. L., Bonnefoy-Claudet, S., & Haghshenas, E. (2007). Use of ambient noise: From spectral amplitude variability to H/V stability. Journal of Earthquake Engineering, 11(6), 925–942. doi:10.1080/13632460701457249.

    Article  Google Scholar 

  32. Guo, Z., Aydin, A., & Kuszmaul, J. S. (2014). Microtremor recordings in Northern Mississippi. Engineering Geology, 179, 146–157. doi:10.1016/j.enggeo.2014.07.001.

    Article  Google Scholar 

  33. Harbi, A., Maouche, S., Vaccari, F., Aoudia, F., Oussadou, F., Panza, G. F., et al. (2006). Seismicity, seismic input and site effects in the Sahel-Algiers region (North Algeria). Soil Dynamics and Earthquake Engineering, 27(5), 427–447. doi:10.1016/j.soildyn.2006.10.002.

    Article  Google Scholar 

  34. Haskell, N. A. (1960). Crustal reflection of plane SH waves. Journal of Geophysical Research, 65, 4147–4150. doi:10.1029/JZ065i012p04147.

    Article  Google Scholar 

  35. Hellel, M., Chatelain, J.-L., Guillier, B., Machane, D., Salem, R. B., Oubaiche, E. H. (2010). Heavier damages without site effects and site effects with lighter damages: Boumerdes City (Algeria) after the May 2003 earthquake. Seismological Research Letters. 81(1), 37–43.

    Article  Google Scholar 

  36. Hellel, M., Oubaiche, E. H., Chatelain, J. L., Machane, D., Bensalem, R., Guiller, B., et al. (2012). Basement mapping with single-station and array ambient vibration data: Delineating faults under Boumerdes City, Algeria. Seismological Research Letters, 83(5), 798–805. doi:10.1785/0220110142.

    Article  Google Scholar 

  37. Hinzen, K. G., Scherbaum, F., & Weber, B. (2004). On the resolution of H/V measurements to determine sediment thickness, a case study across a normal fault in the lower Rhine embayment. Germany. Journal of Earthquake Engineering, 8(6), 909–926. doi:10.1142/S136324690400178X.

    Google Scholar 

  38. Huang, C. S., & Yeh, C. H. (1999). Some properties of randomdec signatures. Mechanical Systems and Signal Processing, 13(3), 491–507. doi:10.1006/mssp.1998.0194.

    Article  Google Scholar 

  39. Ibs-Von Seht, M., & Wohlenberg, J. (1999). Microtremor measurements used to map thickness of soft sediments. Bulletin of the Seismological Society of America, 89(1), 250–259.

    Google Scholar 

  40. JICA & CGS. (2006). Microzonage sismique d’Alger. Final Report, Volume 2, oyo international corp. Nippon Koci Co, Ltd.

  41. Konno, K., & Ohmachi, T. (1998). Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of Microtremor. Bulletin of the Seismological Society of America, 88(1), 228–241.

    Google Scholar 

  42. Lachet, C., & Bard, P. Y. (1994). Numerical and theoretical investigations on the possibilities and limitations of Nakamura’s technique. Journal of Physics of the Earth, 42(4), 377–397.

    Article  Google Scholar 

  43. Machane, D., Bouhadad, Y., Cheikh Lounis, G., Chatelain, J. L., Oubaiche, E. H., Abbes, K., et al. (2008). Examples of geomorphologic and geological hazards in Algeria. Natural Hazards, 45, 295–308. doi:10.1007/s11069-007-9167-5.

    Article  Google Scholar 

  44. Mauffret, A., El Robrini, M., & Gennesseaux, M. (1987). Indice de la compression récente en mer Méditerranée: un bassin losangique sur la marge algérienne. Bulletin de la Société Géologique de France, 8(6), 1195–1206. doi:10.2113/gssgfbull.III.6.1195.

    Google Scholar 

  45. Meghraoui, M. (1988). Géologie des zones sismiques du nord de l’Algérie. Paléosismologie, tectonique active et synthèse sismotectonique. PhD thesis Sci. Univ. Paris VI, p. 356.

  46. Meghraoui, M., Cisternas, A., & Philip, H. (1986). Seismotectonics of the lower Cheliff basin: Structural background of the El Asnam (Algeria) earthquake. Tectonics, 5(6), 809–836. doi:10.1029/TC005i006p00809.

    Article  Google Scholar 

  47. Monod. (1942). Étude hydrogéologique des captages de la ville de Blida en vue de l’amélioration du débit d’étiage. Unpub. Report.

  48. Motamed, R., Ghalandarzadeh, A., Tawhata, I., & Tabatabaei, S. H. (2007). Seismic microzonation and damage assessment of Bam City, South-eastern Iran. Journal of Earthquake Engineering, 11(1), 110–132. doi:10.1080/13632460601123164.

    Article  Google Scholar 

  49. Moulouel, H., Bensalem, R., Machane, D., Bendaoud, A., Gharbi, S., Oubaiche, E. H., et al. (2017). High resistant sand injected marl and low resistant damaged marl to locate and characterize the Thenia fault zone in Boumerdes City (North-Central Algeria). Pure and Applied Geophysics. doi:10.1007/s00024-016-1400-2.

    Google Scholar 

  50. Nakamura, Y. (1989). A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Quarterly Report, Railway Technical Research Institute, 30(1), 25–30.

    Google Scholar 

  51. Nakamura, Y. (2000). Clear identification of fundamental idea of Nakamura’s technique and its applications. In 12th World Conference on Earthquake Engineering, Auckland, New Zealand.

  52. Nakamura, Y. (2009). Basic structure of QTS (HVSR) and examples of applications. In: M. Mucciarelli, M. Herak, & J. Cassidy (Eds.) Increasing seismic safety by combining engineering technologies and seismological data (pp. 33–51). Berlin: Springer.

  53. Nogoshi, M., & Igarashi, T. (1970). On the propagation characteristics of microtremors. Journal of the Seismological Society of Japan, 23, 264–280. (in Japanese with English abstract).

    Google Scholar 

  54. Nogoshi, M., & Igarashi, T. (1971). On the amplitude characteristics of microtremors. Journal of the Seismological Society of Japan, 24, 24–40. (in Japanese with English abstract).

    Google Scholar 

  55. Okada, H., Matsushima, T., Moriya, T., & Sasatani, T. (1990). An exploration technique using long-period microtremors for determination of deep geological structures under urbanized areas. Butsuri-Tansa, 43, 402–417. (in Japanese with English abstract).

    Google Scholar 

  56. Oubaiche, E. H., Chatelain, J. L., Bouguern, A., Bensalem, R., Machane, D., Hellel, M., et al. (2012). Experimental relationship between ambient vibration H/V peak amplitude and shear-wave velocity contrast. Seismological Research Letters, 83(5), 1–9. doi:10.1785/022012004.

    Google Scholar 

  57. Oubaiche, E., Chatelain, J. L., Hellel, M., Wathelet, M., Machane, D., Bensalem, R., et al. (2016). The relationship between ambient vibration H/V and SH transfer function: Some experimental results. Seismological Research Letters, 87(5), 1112–1119. doi:10.1785/0220160113. (ISSN 0895-0695).

    Article  Google Scholar 

  58. Parolai, S., Bormann, P., & Milkereit, C. (2002). New relationships between Vs thickness of sediments and resonance frequency calculated by the H/V ratio of seismic noise for the Cologene area (Germany). Bulletin of the Seismological Society of America, 92(6), 2521–2527. doi:10.1785/0120010248.

    Article  Google Scholar 

  59. Paudyal, Y. R., Yatabe, R., Bhandary, N. P., & Dahal, R. K. (2013). Basement topography of the Kathmandu Basin using microtremor observation. Journal of Asian Earth Sciences, 62, 627–637. doi:10.1016/j.jseaes.2012.11.011.

    Article  Google Scholar 

  60. SESAME European Research Project. (2004). Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations measurements, processing and interpretation. Project No. EVG1-CT-2000-00026 SESAME.

  61. Singh, S. K., Lermo, J., Dominguez, T., Ordaz, M., Espinosa, J. M., Mena, E., et al. (1988). The Mexico earthquake of September 19, 1985—a study of amplification of seismic waves in the valley of Mexico with respect to a hill zone site. Earthquake Spectra, 4(4), 653–674. doi:10.1193/1.1585496.

    Article  Google Scholar 

  62. Sukumaran, P., Parvez, I. A., Sant, D. A., Rangarajan, G., & Krishnan, K. (2011). Profiling of Late Tertiary–Early Quaternary surface in the lower reaches of Narmada valley using microtremors. Journal of Asian Earth Sciences, 41, 325–334. doi:10.1016/j.jseaes.2011.02.011.

    Article  Google Scholar 

  63. Talha Quadri, S. M., Sajjad, S. H., Sheikh, R. A., Rehman, K., Rafi, Z., Nawaz, B., et al. (2015). Ambient noise measurements in Rawalpindi–Islamabad, twin cities of Pakistan: A step towards site response analysis to mitigate impact of natural hazard. Natural Hazards, 78(2), 1111–1123. doi:10.1007/s11589-014-0105-9.

    Article  Google Scholar 

  64. Thomas, G. (1985). Géodynamique d’un bassin intramontagneux: le bassin du bas Chéliff occidental (Algérie) durant le Mio-Plio-Quaternaire. Ph.D. thesis, Pau University, France.

  65. Trumelet, C. (1887). Récit selon légende, la tradition et l’histoire, tome 2. Les Dictons d’Alger adolphe jourdan, libraire-editeur 4 place du gouvernement. http://www.hierlalgerie.com/index.php/epubs/villes-et-regions-742/138-blida-recits-selonlegende-la-tradition-et-l-histoire-par-le-colonel-c-trumelet-1887-sp-358.

  66. Yamanaka, H., Takemura, M., Ishida, H., & Niwa, M. (1994). Characteristics of long period microtremors and their applicability in exploration of deep sediments. Bulletin of the Seismological Society of America, 84(6), 1831–1841.

    Google Scholar 

  67. Yelles-Chaouche, A., Boudiaf, A., Djellit, H., & Bracene, R. (2006). La tectonique active de la région nord-algérienne. Comptes Rendus Geoscience, 338, 126–139.

    Article  Google Scholar 

Download references

Acknowledgements

This study is part of a cooperation project between the National Center of Applied Research in Earthquake Engineering (CGS) in Algiers (Algeria) and the French Institute of Research and Development (IRD-France). We would like to thank all of the CGS and LGIT staff (Laboratoire de Géophysique Interne et Tectonophysique now ISTerre) for their participation in the data acquisition. We would like also to thank ANRH (Agence Nationale des Ressources Hydraulique) for facilitating and providing us results and the unpublished reports of the study by electrical survey in Mitidja basin and Hamiz and the boreholes data. Anonymous reviewers are thanked for their constructive review which has greatly improved the document.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Assia Bouchelouh.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bouchelouh, A., Bensalem, R., Zaourar, N. et al. The Miocene Roof Mapping Using Microtremor Recording and Electrical Survey Method in Blida City, Algeria. Pure Appl. Geophys. 175, 287–301 (2018). https://doi.org/10.1007/s00024-017-1684-x

Download citation

Keywords

  • Blida
  • sediment thickness
  • microtremors
  • HVSR
  • VES
  • amplification