Advertisement

Pure and Applied Geophysics

, Volume 174, Issue 10, pp 3813–3823 | Cite as

Historical Sea Level in the South Pacific from Rescued Archives, Geodetic Measurements, and Satellite Altimetry

  • J. AucanEmail author
  • M. A. Merrifield
  • N. Pouvreau
Article
Part of the following topical collections:
  1. Sea Level-2017

Abstract

Automatic sea-level measurements in Nouméa, South Pacific, started in 1957 for the International Geophysical year. Data from this location exist in paper record for the 1957–1967 period, and in two distinct electronic records for the 1967–2005 and 2005–2015 period. In this study, we digitize the early record, and established a link between the two electronic records to create a unique, nearly 60 year-long instrumental sea-level record. This work creates one of the longest instrumental sea-level records in the Pacific Islands. These data are critical for the study of regional and interannual variations of sea level. This new data set is then used to infer rates of vertical movements by comparing it to (1) the entire satellite altimetric record (1993–2013) and (2) a global sea-level reconstruction (1957–2010). These inferred rates show an uplift of 1.3–1.4 mm/year, opposite to the currently accepted values of subsidence found in the geological and geodetic literature, and underlie the importance of systematic geodetic measurements at, over very near tide gauges.

Keywords

Sea level archives tide gauges altimetry geodesy 

Notes

Acknowledgements

The authors thank two anonymous reviewers for providing useful comments to improve the manuscript.

References

  1. Ablain, M., Cazenave, A., Valladeau, G., & Guinehut, S. (2009). A new assessment of the error budget of global mean sea level rate estimated by satellite altimetry over 1993–2008. Ocean Science, 5, 193–201. doi: 10.5194/os-5-193-2009. http://www.ocean-sci.net/5/193/2009/.
  2. Becker, M., Meyssignac, B., Letetrel, C., Llovel, W., Cazenave, A., & Delcroix, T. (2012). Sea level variations at tropical Pacific islands since 1950. Global and Planetary Change, 80–81, 85–98. doi: 10.1016/j.gloplacha.2011.09.004 http://linkinghub.elsevier.com/retrieve/pii/S0921818111001445.
  3. Cabioch, G., Recy, J., Jouannic, C., & Turpin, L. (1996). Controle climatique et tectonique de l’edification recifale en Nouvelle-Caledonie au cours du Quaternaire terminal. Bulletin de la Societe Geologique de France, 167, 729–742. http://bsgf.geoscienceworld.org/content/167/6/729.short.
  4. Chambers, D. P., Cazenave, A., Champollion, N., Dieng, H., Llovel, W., Forsberg, R., von Schuckmann, K., & Wada, Y. (2017). Evaluation of the global mean sea level budget between 1993 and 2014. Surveys in Geophysics, 38, 309–327. doi: 10.1007/s10712-016-9381-3.CrossRefGoogle Scholar
  5. Church, J., & White, N. (2011) Sea-level rise from the late 19th to the early 21st century. Surveys in Geophysics, 32, 585–602. doi: 10.1007/s10712-011-9119-1.CrossRefGoogle Scholar
  6. Fenoglio-Marc, L., Schöne, T., Illigner, J., Becker, M., Manurung, P., & Khafid. (2012). Sea level change and vertical motion from satellite altimetry, tide gauges and GPS in the Indonesian region. Marine Geodesy, 35, 137–150. doi: 10.1080/01490419.2012.718682.CrossRefGoogle Scholar
  7. Hamlington, B. D., & Thompson, P. R. (2015). Considerations for estimating the 20th century trend in global mean sea level. Geophysical Research Letters, 42, 4102–4109. doi: 10.1002/2015GL064177.CrossRefGoogle Scholar
  8. Hay, C. C., Morrow, E., Kopp, R. E., & Mitrovica, J. X. (2015). Probabilistic reanalysis of twentieth-century sea-level rise. Nature, 517, 481–484. doi: 10.1038/nature14093.CrossRefGoogle Scholar
  9. King, M. A., Keshin, M., Whitehouse, P. L., Thomas, I. D., Milne, G., & Riva, R. E. M. (2012). Regional biases in absolute sea-level estimates from tide gauge data due to residual unmodeled vertical land movement. Geophysical Research Letters, 39. doi: 10.1029/2012GL052348.
  10. Marcos, M., Puyol, B., Wppelmann, G., Herrero, C., & Garca-Fernndez, M. J. (2011). The long sea level record at Cadiz (southern Spain) from 1880 to 2009. Journal of Geophysical Research: Oceans, 116, c12003. doi: 10.1029/2011JC007558.CrossRefGoogle Scholar
  11. Mitchum, G. T. (2000). An improved calibration of satellite altimetric heights using tide gauge sea levels with adjustment for land motion. Marine Geodesy, 23, 145–166.CrossRefGoogle Scholar
  12. Nerem, R. S., & Mitchum, G. T. (2002). Estimates of vertical crustal motion derived from differences of TOPEX/POSEIDON and tide gauge sea level measurements. Geophysical Research Letters, 29, 40-1–40-4. doi: 10.1029/2002GL015037.
  13. Peltier, W. (2004). Global glacial isostasy and the surface of the ice-age earth: The Ice-5G (Vm2) model and GRACE. Annual Review of Earth and Planetary Sciences, 32, 111–149. doi: 10.1146/annurev.earth.32.082503.144359.CrossRefGoogle Scholar
  14. Pfeffer, J., & Allemand, P. (2016). The key role of vertical land motions in coastal sea level variations: A global synthesis of multisatellite altimetry, tide gauge data and GPS measurements. Earth and Planetary Science Letters, 439, 39–47. doi: 10.1016/j.epsl.2016.01.027.CrossRefGoogle Scholar
  15. Pouvreau, N. (2008). Trois cents ans de mesures marégraphiques en France: outils, méthodes et tendances des composantes du niveau de la mer au port de Brest. Ph.D. thesis, Universite de La Rochelle.Google Scholar
  16. Raucoules, D., Cozannet, G. L., Wppelmann, G., de Michele, M., Gravelle, M., Daag, A., & Marcos, M. (2013). High nonlinear urban ground motion in Manila (Philippines) from 1993 to 2010 observed by DInSAR: Implications for sea-level measurement. Remote Sensing of Environment, 139, 386–397. doi: 10.1016/j.rse.2013.08.021. http://www.sciencedirect.com/science/article/pii/S0034425713002794.
  17. Ray, R., Beckley, B., & Lemoine, F. (2010). Vertical crustal motion derived from satellite altimetry and tide gauges, and comparisons with DORIS measurements. Advances in Space Research, 45, 1510–1522. doi: 10.1016/j.asr.2010.02.020. http://www.sciencedirect.com/science/article/pii/S0273117710001250 (DORIS: Scientific Applications in Geodesy and Geodynamics).
  18. Ray, R. D., & Douglas, B. C. (2011). Experiments in reconstructing twentieth-century sea levels. Progress in Oceanography, 91, 496–515. doi: 10.1016/j.pocean.2011.07.021. http://www.sciencedirect.com/science/article/pii/S0079661111000759.
  19. Santamaria-Gomez, A., Gravelle, M., & Woppelmann, G. (2014). Long-term vertical land motion from double-differenced tide gauge and satellite altimetry data. Journal of Geodesy, 88, 207–222. doi: 10.1007/s00190-013-0677-5.CrossRefGoogle Scholar
  20. Slangen, A. B. A., van de Wal, R. S. W., Wada, Y., & Vermeersen, L. L. A. (2014). Comparing tide gauge observations to regional patterns of sea-level change (1961–2003). Earth System Dynamics, 5, 243–255. doi: 10.5194/esd-5-243-2014. http://www.earth-syst-dynam.net/5/243/2014/.
  21. Testut, L., Miguez, B. M., Wppelmann, G., Tiphaneau, P., Pouvreau, N., & Karpytchev, M. (2010). Sea level at Saint Paul Island, southern Indian Ocean, from 1874 to the present. Journal of Geophysical Research: Oceans, 115, c12028. doi: 10.1029/2010JC006404.CrossRefGoogle Scholar
  22. Thompson, P. R., & Merrifield, M. A. (2014). A unique asymmetry in the pattern of recent sea level change. Geophysical Research Letters, 41, 7675–7683. doi: 10.1002/2014GL061263.CrossRefGoogle Scholar
  23. Thompson, P. R., Hamlington, B. D., Landerer, F. W., & Adhikari, S. (2016). Are long tide gauge records in the wrong place to measure global mean sea level rise? Geophysical Research Letters, 43, 10403–10411. doi: 10.1002/2016GL070552.CrossRefGoogle Scholar
  24. Valladeau, G., Legeais, J. F., Ablain, M., Guinehut, S., & Picot, N. (2012). Comparing altimetry with tide gauges and Argo profiling floats for data quality assessment and mean sea level studies. Marine Geodesy, 35, 42–60. doi: 10.1080/01490419.2012.718226.CrossRefGoogle Scholar
  25. Watson, C. S., White, N. J., Church, J. A., King, M. A., Burgette, R. J., & Legresy, B. (2015). Unabated global mean sea-level rise over the satellite altimeter era. Nature Climate Change, 5, 565–568. doi: 10.1038/nclimate2635.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.LEGOS (IRD, CNES, CNRS, UPS)ToulouseFrance
  2. 2.University of Hawaii Sea Level CenterHonoluluUSA
  3. 3.REFMAR SHOMBrestFrance

Personalised recommendations