Skip to main content
Log in

Threshold Velocity for Saltation Activity in the Taklimakan Desert

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The threshold velocity is an indicator of a soil’s susceptibility to saltation activity and is also an important parameter in dust emission models. In this study, the saltation activity, atmospheric conditions, and soil conditions were measured from 1 August 2008 to 31 July 2009 in the Taklimakan Desert, China. the threshold velocity was estimated using the Gaussian time fraction equivalence method. At 2 m height, the 1-min averaged threshold velocity varied between 3.5 and 10.9 m/s, with a mean of 5.9 m/s. Threshold velocities varying between 4.5 and 7.5 m/s accounted for about 91.4% of all measurements. The average threshold velocity displayed clear seasonal variations in the following sequence: winter (5.1 m/s) < autumn (5.8 m/s) < spring (6.1 m/s) < summer (6.5 m/s). A regression equation of threshold velocity was established based on the relations between daily mean threshold velocity and air temperature, specific humidity, and soil volumetric moisture content. High or moderate positive correlations were found between threshold velocity and air temperature, specific humidity, and soil volumetric moisture content (air temperature r = 0.75; specific humidity r = 0.59; and soil volumetric moisture content r = 0.55; sample size = 251). In the study area, the observed horizontal dust flux was 4198.0 kg/m during the whole period of observation, while the horizontal dust flux calculated using the threshold velocity from the regression equation was 4675.6 kg/m. The correlation coefficient between the calculated result and the observations was 0.91. These results indicate that atmospheric and soil conditions should not be neglected in parameterization schemes for threshold velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abulaiti, A., Kimura, R., Shinoda, M., Kurosaki, Y., Mikami, M., Ishizuka, M., et al. (2014). An observational study of saltation and dust emission in a hotspot of Mongolia. Aeolian Research, 15, 169–176.

    Article  Google Scholar 

  • Baas, A. C. W. (2004). Evaluation of saltation flux impact responders for measuring instantaneous aeolian sand transport intensity. Geomorphology, 59, 99–118.

    Article  Google Scholar 

  • Bagnold, R. A. (1941). The physics of blown sand and desert dunes. London: Methuen.

    Google Scholar 

  • Barchyn, T. E., & Hugenholtz, C. H. (2011). Comparison of four methods to calculate aeolian sediment transport threshold from field data: Implications for transport prediction and discussion of method evolution. Geomorphology, 129, 190–203.

    Article  Google Scholar 

  • Barchyn, T. E., & Hugenholtz, C. H. (2012). Winter variability of aeolian sediment transport threshold on a cold-climate dune. Geomorphology, 177–178, 38–50.

    Article  Google Scholar 

  • Chen, W. N., Dong, Z. B., Yang, Z. T., Han, Z. W., Zhang, J. K., & Zhang, M. L. (1995). Threshold velocities of sand-driving wind in the Taklimakan Desert. Acta Geographica Sinica, 50, 360–367. (in Chinese).

    Google Scholar 

  • Chen, Y. S., Sheen, P. C., Chen, E. R., Liu, Y. K., Wu, T. N., & Yang, C. Y. (2004). Effects of Asian dust storm events on daily mortality in Taipei, Taiwan. Environmental Research, 95, 151–155.

    Article  Google Scholar 

  • Chepil, W. S. (1945). Dynamics of wind erosion: I. Nature of movement of soil by wind. Soil Science, 60, 305–320.

    Article  Google Scholar 

  • Coakley, J. A., Cess, J. R. D., & Yurevich, F. B. (1983). The effect of tropospheric aerosols on the Earth’s radiation budget—A parameterization for climate models. Journal of the Atmospheric Sciences, 40, 116–138.

    Article  Google Scholar 

  • Darmenova, K., Sokolik, I. N., Shao, Y. P., Marticorenaet, B., & Bergametti, G. (2009). Development of a physically based dust emission module within the Weather Research and Forecasting (WRF) model: assessment of dust emission parameterizations and input parameters for source regions in central and East Asia. Journal of Geophysical Research, 114, D14201. doi:10.1029/2008JD011236.

    Article  Google Scholar 

  • Davidson-Arnott, R. G. D., Yang, Y. Q., Ollerhead, J., Patrick, A. H., & Ian, J. W. (2007). The effects of surface moisture on aeolian sediment transport threshold and mass flux on a beach. Earth Surface Processes Landforms, 33, 55–74.

    Article  Google Scholar 

  • Deoro, L. A., & Buschiazzo, D. E. (2009). Threshold wind velocity as an index of soil susceptibility to wind erosion under variable climatic conditions. Land Degradation and Development, 20, 14–21.

    Article  Google Scholar 

  • Dong, Z. B., Liu, X. P., Wang, X. M., Li, F., & Zhao, A. G. (2004). Experimental investigation of the velocity of a sand cloud blowing over a sandy surface. Earth Surface Processes Landforms, 29, 343–358.

    Article  Google Scholar 

  • Gautam, R., Hsu, N. C., & Lau, K. M. (2010). Premonsoon aerosol characterization and radiative effects over the Indo-Gangetic Plains: Implications for regional climate warming. Journal of Geophysical Research, 115, D17208. doi:10.1029/2010JD013819.

    Article  Google Scholar 

  • In, H. J., & Park, S. U. (2003). Estimation of dust emission amount for a dust storm event occurred in April 1998 in China. Water, Air, and Soil Pollution, 148, 201–221.

    Article  Google Scholar 

  • Iversen, J. D., & Rasmussen, K. R. (1994). The effects of surface slope on saltation threshold. Sedimentology, 41, 721–728.

    Article  Google Scholar 

  • Kawamura, R. (1951), Study on Sand Movement by Wind, Institute of Science and Technology Report 5, 95–112, Tokyo.

  • Kimura, R. J., & Shinoda, M. (2010). Spatial distribution of threshold wind speeds for dust outbreaks in northeast Asia. Geomorphology, 114, 319–325.

    Article  Google Scholar 

  • Kurosaki, K., & Mikami, M. (2007). Threshold wind speed for dust emission in east Asia and its seasonal variations. Journal of Geophysical Research, 112, D17202. doi:10.1029/2006JD007988.

    Article  Google Scholar 

  • Li, X. L., & Zhang, H. S. (2014). Observation and parameterization on dust emission over Horqin sandy land area. Beijing: Peking University.

    Google Scholar 

  • Marticorena, B., & Bergametti, G. (1995). Modeling the atmospheric dust cycle: 1. Design of a soil derived dust emission scheme. Journal of Geophysical Research, 100, 16415–16430.

    Article  Google Scholar 

  • McKenna, N. C. (1989). Kinetic energy transfer through impact and its role in entrainment by wind of particles from frozen surfaces. Sedimentology, 36, 1007–1015.

    Article  Google Scholar 

  • McKenna, N. C. (2003). Effects of temperature and humidity upon the entrainment of sedimentary particles by wind. Boundary Layer Meteorology, 108, 61–89.

    Article  Google Scholar 

  • McKenna, N. C. (2004). Effects of temperature and humidity upon the transport of sedimentary particles by wind. Sedimentology, 51, 1–17.

    Article  Google Scholar 

  • McKenna, N. C., & Langston, G. (2006). Measurement of water content as a control of particle entrainment by wind. Earth Surface Processes Landforms, 31, 303–317.

    Article  Google Scholar 

  • Mckenna, N. C., & Sanderson, S. (2008). Humidity control of particle emissions in aeolian systems. Journal of Geophysical Research, 113, 14. doi:10.1029/2007JF000780.

    Article  Google Scholar 

  • Owen, R. P. (1964). Saltation of uniform grains in air. Journal of Fluid Mechanics, 29, 407–432.

    Google Scholar 

  • Park, S. U., & In, H. J. (2003). Parameterization of dust emission for the simulation of the yellow sand (Asian dust) event observed in March 2002 in Korea. Journal of Geophysical Research, 108, D19. doi:10.1029/2003JD003484.

    Google Scholar 

  • Prospero, J. M. (1999). Assessing the impact of advected African dust on air quality and health in the Eastern United States. Human and Ecological Risk Assessment, 5, 471–479.

    Article  Google Scholar 

  • Prospero, J. M., Collard, F. X., Moliniéj, J., & Jeannot, A. (2014). Characterizing the annual cycle of African dust transport to the Caribbean Basin and South America and its impact on the environment and air quality. Global Biogeochemical Cycles, 29, 757–773.

    Article  Google Scholar 

  • Ramanathan, V., Crutzen, P. J., Kiehl, J. T., & Rosenfeld, D. (2001). Aerosols, climate and the hydrological cycle. Science, 294, 2119–2124.

    Article  Google Scholar 

  • Ravi, S., & D’Odorico, P. (2005). A field-scale analysis of the dependence of wind erosion threshold velocity on air humidity. Geophysical Research Letters, 32, L21404. doi:10.1029/2005GL023675.

    Article  Google Scholar 

  • Sankey, J. B., Germino, M. J., & Glenn, N. F. (2009). Relationships of post-fire aeolian transport to soil and atmospheric conditions. Aeolian Research, 1, 75–85.

    Article  Google Scholar 

  • Shao, Y., & Lu, H. (2000). A simple expression for wind erosion threshold friction velocity. Journal of Geophysical Research, 105, 22437–22443.

    Article  Google Scholar 

  • Shao, Y., Jung, E., & Leslie, L. M. (2002). Numerical prediction of northeast Asian dust storms using an integrated wind erosion modeling system. Journal of Geophysical Research, 107, D244814. doi:10.1029/2001JD001493.

    Google Scholar 

  • Shi, F., & Huang, N. (2010). Computational simulation of blown sand fluxes over the surfaces of complex microtopography. Environmental Modelling and Software, 25, 362–367.

    Article  Google Scholar 

  • Sokolik, I. N., & Toon, O. B. (1996). Direct radiative forcing by anthropogenic airborne mineral aerosols. Nature, 381, 681–683.

    Article  Google Scholar 

  • Spaan, W. P., & van den Abeele, G. D. (1991). Wind borne particle measurements with acoustic sensors. Soil Technology, 4, 51–63.

    Article  Google Scholar 

  • Spyrou, C., Kallos, G., Mitsakou, C. C., Athanasiadis, P., Kalogeri, C., & Iacono, M. J. (2013). Modeling the radiative effects of desert dust on weather and regional climate. Atmospheric Chemistry and Physics, 13, 5489–5504.

    Article  Google Scholar 

  • Stout, J. E. (2004). A method for establishing the critical threshold for aeolian transport in the field. Earth Surface Processes Landforms, 29, 1195–1207.

    Article  Google Scholar 

  • Stout, J. E. (2012). A field study of wind erosion following a grass fire on the Llano Estacado of North America. Journal of Arid Environment, 82, 165–174.

    Article  Google Scholar 

  • Stout, J. E., & Arimoto, R. (2010). Threshold wind velocities for sand movement in the Mescalero Sands of southeastern New Mexico. Journal of Arid Environment, 74, 1456–1460.

    Article  Google Scholar 

  • Stout, J. E., & Zobeck, T. M. (1997). Intermittent saltation. Sedimentology, 44, 959–970.

    Article  Google Scholar 

  • Udo, K., Kuriyama, Y., & Jackson, D. W. T. (2008). Observations of wind-blown sand under various meteorological conditions at a beach. Journal of Geophysical Research, 113, F04008. doi:10.1029/2007JF000936.

    Article  Google Scholar 

  • Vianaa, M., Querol, X., Alastueya, A., Cuevas, E., & Rodríguez, R. (2002). Influence of African dust on the levels of atmospheric particulates in the Canary Islands air quality network. Atmospheric Environment, 36, 5861–5875.

    Article  Google Scholar 

  • Wiggs, G. F. S., Atherton, R. J., & Baird, A. (2004a). Thresholds of aeolian sand transport: Establishing suitable values. Sedimentology, 51, 95–108.

    Article  Google Scholar 

  • Wiggs, G. F. S., Baird, A. J., & Atherton, R. J. (2004b). The dynamic effects of moisture on the entrainment and transport of sand by wind. Geomorphology, 59, 13–30.

    Article  Google Scholar 

  • Yang, X. H., He, Q., Ali, M., Huo, W., & Liu, X. C. (2013). Near-surface sand-dust horizontal flux in Tazhong—The hinterland of the Taklimakan Desert. Journal of Arid Land, 5, 199–206.

    Article  Google Scholar 

  • Yang, X. H., He, Q., Ali, M., Huo, W., Liu, X. C., & Miriam, S. (2012). A field experiment on dust emission by wind erosion in the Taklimakan desert. Acta Meteorol Sin, 26, 241–249.

    Article  Google Scholar 

  • Yang, X. H., Yang, F., Liu, X. C., Huo, W., He, Q., Ali, M., et al. (2016). Comparison of horizontal dust fluxes simulated with two dust emission schemes based on field experiments in Xinjiang, China. Theoretical and Applied Climatology, 126, 223–231.

    Article  Google Scholar 

  • Zobeck, T. M., Sterk, G., Funk, R., Rajot, J. L., Stout, J. E., & Pelt, R. S. V. (2003). Measurement and data analysis methods for fieldscale wind erosion studies and model validation. Earth Surface Processes and Landforms, 28, 1163–1188.

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the China Special Fund for Meteorological Research in the Public Interest (GYHY201106043), the National Natural Science Foundation of China (41405013), and the Central Scientific Research Institute of the Public Basic Scientific Research Business Professional (IDM201103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuanghe Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., He, Q., Matimin, A. et al. Threshold Velocity for Saltation Activity in the Taklimakan Desert. Pure Appl. Geophys. 174, 4459–4470 (2017). https://doi.org/10.1007/s00024-017-1644-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-017-1644-5

Keywords

Navigation