The Adriatic Sea: A Long-Standing Laboratory for Sea Level Studies

Abstract

The paper provides a comprehensive review of all aspects of Adriatic Sea level research covered by the literature. It discusses changes occurring over millennial timescales and documented by a variety of natural and man-made proxies and post-glacial rebound models; mean sea level changes occurring over centennial to annual timescales and measured by modern instruments; and daily and higher-frequency changes (with periods ranging from minutes to a day) that are contributing to sea level extremes and are relevant for present-day flooding of coastal areas. Special tribute is paid to the historic sea level studies that shaped modern sea level research in the Adriatic, followed by a discussion of existing in situ and remote sensing observing systems operating in the Adriatic area, operational forecasting systems for Adriatic storm surges, as well as warning systems for tsunamis and meteotsunamis. Projections and predictions of sea level and related hazards are also included in the review. Based on this review, open issues and research gaps in the Adriatic Sea level studies are identified, as well as the additional research efforts needed to fill the gaps. The Adriatic Sea, thus, remains a laboratory for coastal sea level studies for semi-enclosed, coastal and marginal seas in the world ocean.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

References

  1. Accerboni, E., Castelli, F., & Mosetti, F. (1971). Sull’uso di modelli matematici idrodinamici per lo studio dell’acqua alta a Venezia. Bollettino di Geofisica Teorica ed Applicata, 13, 18–35.

    Google Scholar 

  2. Accerboni, E., & Manca, B. (1973). Storm surge forecasting in the Adriatic Sea by means of a two-dimensional hydrodynamical numerical model. Bollettino di Geofisica Teorica ed Applicata, 15, 3–22.

    Google Scholar 

  3. Adloff, F., Somot, S., Sevault, F., Jorda, G., Aznar, R., Deque, M., et al. (2015). Mediterranean Sea response to climate change in an ensemble of twenty first century scenarios. Climate Dynamics, 45, 2775–2802.

    Article  Google Scholar 

  4. Airy, G. B. (1845). Tides and waves. Encyclopaedia Metropolitana, 5, 241–396.

    Google Scholar 

  5. Ambraseys, N., & Synolakis, C. (2010). Tsunami catalogs for the Eastern Mediterranean, revisited. Journal of Earthquake Engineering, 14, 309–330.

    Article  Google Scholar 

  6. Androulidakis, Y. S., Kombiadou, K. D., Makris, C. V., Baltikas, V. N., & Krestenitis, Y. N. (2015). Storm surges in the Mediterranean Sea: Variability and trends under future climatic conditions. Dynamics of Atmospheres and Oceans, 71, 56–82.

    Article  Google Scholar 

  7. Antonioli, F., Anzidei, M., Lambeck, K., Auriemma, R., Gaddi, D., Furlani, S., et al. (2007). Sea-level change during the Holocene in Sardinia and in the northeastern Adriatic (central Mediterranean Sea) from archaeological and geomorphological data. Quaternary Science Reviews, 26, 2463–2486.

    Article  Google Scholar 

  8. Antonioli, F., Ferranti, L., Fontana, A., Amorosi, A., Bondesan, A., Braitenberg, C., et al. (2009). Holocene relative sea-level changes and vertical movements along the Italian and Istrian coastlines. Quaternary International, 206, 102–133.

    Article  Google Scholar 

  9. Antonioli, F., Lo Presti, V., Rovere, A., Ferranti, L., Anzidei, M., Furlani, S., et al. (2015). Tidal notches in Mediterranean Sea: A comprehensive analysis. Quaternary Science Reviews, 119, 66–84.

    Article  Google Scholar 

  10. Arabelos, D. N., Papazachariou, D. Z., Contadakis, M. E., & Spatalas, S. D. (2011). A new tide model for the Mediterranean Sea based on altimetry and tide gauge assimilation. Ocean Science, 7, 429–444.

    Article  Google Scholar 

  11. Bajo, M., Zampato, L., Umgiesser, G., Cucco, A., & Canestrelli, P. (2007). A finite element operational model for storm surge prediction in Venice. Estuarine, Coastal and Shelf Science, 75, 236–249.

    Article  Google Scholar 

  12. Baker, I., Peterson, A., Brown, G., & McAlpine, C. (2012). Local government response to the impacts of climate change: An evaluation of local climate adaptation plans. Landscape and Urban Planning, 107, 127–136.

    Article  Google Scholar 

  13. Bargagli, A., Carillo, A., Piscane, G., Ruti, P. M., Struglia, M. V., & Tartaglione, N. (2002). An integrated forecast system over the Mediterranean basin: Extreme surge prediction in the northern Adriatic Sea. Monthly Weather Review, 130, 1317–1332.

    Article  Google Scholar 

  14. Barnett, T. P. (1984). The estimation of “global” sea level change: A problem of uniqueness. Journal of Geophysical Research, 89, 7980–7988.

    Article  Google Scholar 

  15. Barriopedro, D., Garcia-Herrera, R., Lionello, P., & Pino, C. (2010). A discussion of the links between solar variability and high-storm-surge events in Venice. Journal of Geophysical Research, 115, D13101. doi:10.1029/2009JD013114.

    Article  Google Scholar 

  16. Bedosti, B. (1980). Considerazioni sul maremoto adriatico (tsunami) del 21.6.1978 (in Italian). Supplemento Bollettini Sismici Provv, 12–14–20, 2–17.

  17. Bell, J., Saunders, M. I., Leon, J. X., Mills, M., Kythreotis, A., Phinn, S., et al. (2014). Maps, laws and planning policy: Working with biophysical and spatial uncertainty in the case of sea level rise. Environmental Science & Policy, 44, 247–257.

    Article  Google Scholar 

  18. Belušić, D., Grisogono, B., & Bencetić Klaić, Z. (2007a). Atmospheric origin of the devastating coupled air-sea event in the east Adriatic. Journal of Geophysical Research, 112, D17111. doi:10.1029/2006JD008204.

    Article  Google Scholar 

  19. Belušić, D., & Strelec Mahović, N. (2009). Detecting and following atmospheric disturbances with a potential to generate meteotsunamis in the Adriatic. Physics and Chemistry of the Earth, 34, 918–927.

    Article  Google Scholar 

  20. Belušić, D., Žagar, M., & Grisogono, B. (2007b). Numerical simulation of pulsations in the bora wind. Quarterly Journal of the Royal Meteorological Society, 133, 1371–1388.

    Article  Google Scholar 

  21. Bertotti, L., Bidlot, J.-R., Buizza, R., Cavaleri, L., & Janousek, M. (2011). Deterministic and ensemble-based prediction of Adriatic Sea sirocco storms leading to ‘acqua alta’ in Venice. Quarterly Journal of the Royal Meteorological Society, 137, 1446–1466.

    Article  Google Scholar 

  22. Bilajbegović, A., & Marchesini, C. (1991). Yugoslav vertical datums and preliminary connections of Yugoslav, Austrian and Italian levelling networks (in Croatian). Geodetski list, 7(9), 233–248.

    Google Scholar 

  23. Blum, M. D., & Roberts, H. H. (2009). Drowning of the Mississippi Delta due to insufficient sediment supply and global sea-level rise. Nature Geoscience, 2, 488–491.

    Article  Google Scholar 

  24. Bock, Y., Wdowinski, S., Ferretti, A., Novali, F., & Fumagalli, A. (2012). Recent subsidence of the Venice Lagoon from continuous GPS and interferometric synthetic aperture radar. Geochemistry, Geophysics, Geosystems, 13, Q03023. doi:10.1029/2011GC003976.

    Google Scholar 

  25. Bondesan, M., Castiglioni, G. B., Elmi, C., Gabbianelli, G., Marocco, R., Pirazzoli, P. A., et al. (1995). Coastal areas at risk from storm surges and sea-level rise in northeastern Italy. Journal of Coastal Research, 11, 1354–1379.

    Google Scholar 

  26. Book, J. W., Perkins, H., & Wimbush, M. (2009). North Adriatic tides: Observations, variational data assimilation modeling, and linear tide dynamics. Geofizika, 26, 115–143.

    Google Scholar 

  27. Bozzi Zadro, M., & Poretti, G. (1971). Analisi degli spettri complessi delle maree marine registrate a Trieste. Geofisica e Meteorologia, 20, 83–88.

    Google Scholar 

  28. Bregant, K., Sušnik, M., Strojan, I., & Shaw, A. G. P. (2005). Sea level variability at Adriatic coast and its relationship to atmospheric forcing. Annales Geophysicae, 23, 1997–2010.

    Article  Google Scholar 

  29. Buble, G., Bennett, R. A., & Hreinsdóttir, S. (2010). Tide gauge and GPS measurements of crustal motion and sea level rise along the eastern margin of Adria. Journal of Geophysical Research, 115, B02404. doi:10.1029/2008JB006155.

    Article  Google Scholar 

  30. Bučić, G. (1861). Hoehe des Meeresspiegels und des Luftdruckes. Uebersichten der Witterung in Oesterreich und einigen Auswaertigen Stationen im Jahre, 1860, 47–48.

    Google Scholar 

  31. Calafat, F. M., Avgoustoglou, E., Jorda, G., Flocas, H., Zodiatis, G., Tsimplis, M. N., et al. (2014). The ability of a barotropic model to simulate sea level extremes of meteorological origin in the Mediterranean Sea, including those caused by explosive cyclones. Journal of Geophysical Research, 119, 7840–7853.

    Google Scholar 

  32. Calafat, F. M., & Gomis, D. (2009). Reconstruction of Mediterranean sea level fields for the period 1945–2000. Global and Planetary Change, 66, 225–234.

    Article  Google Scholar 

  33. Calafat, F. M., Jordà, G., Marcos, M., & Gomis, D. (2012). Comparison of Mediterranean sea level variability as given by three baroclinic models. Journal of Geophysical Research, 117, C02009. doi:10.1029/2011JC007277.

    Google Scholar 

  34. Caloi, P. (1938). Sesse dell’alto Adriatico con particolare riguardo al Golfo di Trieste. Memorie, R. Comitato Talassografico Italiano, 247, 1–39.

    Google Scholar 

  35. Camuffo, D., & Sturaro, G. (2003). Sixty-CM submersion of Venice discovered thanks to Canaletto’s paintings. Climatic Change, 58, 333–343.

    Article  Google Scholar 

  36. Candela, J. (1991). The Gibraltar Strait and its role in the dynamics of the Mediterranean Sea. Dynamics of Atmosphere and Oceans, 15, 267–299.

    Article  Google Scholar 

  37. Carillo, A., Sannino, G., Artale, V., Ruti, P. M., Calmanti, S., & Dell’Aquila, A. (2012). Steric sea level rise over the Mediterranean Sea: Present climate and scenario simulations. Climate Dynamics, 39, 2167–2184.

    Article  Google Scholar 

  38. Cavaleri, L., Bertotti, L., Buizza, R., Buzzi, A., Masato, V., Umgiesser, G., et al. (2010). Predictability of extreme meteo-oceanographic events in the Adriatic Sea. Quarterly Journal of the Royal Meteorological Society, 136, 400–413.

    Google Scholar 

  39. Cazenave, A., Dieng, H. B., Meyssignac, B., von Schuckmann, K., Decharme, B., & Berthier, E. (2014). The rate of sea-level rise. Nature Climate Change, 4, 358–361.

    Article  Google Scholar 

  40. Cazenave, A., & Le Cozannet, G. (2014). Sea level rise and its coastal impacts. Earths Future, 2, 15–34.

    Article  Google Scholar 

  41. Cerovečki, I., & Orlić, M. (1989). Modeling residual sea levels of the Bakar Bay (in Croatian). Geofizika, 6, 37–57.

    Google Scholar 

  42. Cerovečki, I., Orlić, M., & Hendershott, M. C. (1997). Adriatic seiche decay and energy loss to the Mediterranean. Deep-Sea Research I, 44, 2007–2029.

    Article  Google Scholar 

  43. Chavanne, C., Janeković, I., Flament, P., Poulain, P.-M., Kuzmić, M., & Gurgel, K.-W. (2007). Tidal currents in the northwestern Adriatic: High-frequency radio observations and numerical model predictions. Journal of Geophysical Research, 112, C03S21. doi:10.1029/2006JC003523.

    Article  Google Scholar 

  44. Church, J. A., Clark, P. U., Cazenave, A., Gregory, J. M., Jevrejeva, S., Levermann, A., Merrifield, M. A., Milne, G. A., Nerem, R. S., Nunn, P. D., Payne, A. J., Pfeffer, W. T., Stammer, D., & Unnikrishnan, A. S. (2013). Sea level change. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

  45. Churchill, D. D., Houston, S. H., & Bond, N. A. (1995). The Daytona Beach wave of 3–4 July 1992: A shallow water gravity wave forced by a propagating squall line. Bulletin of the American Meteorological Society, 76, 21–32.

    Article  Google Scholar 

  46. Conte, D., & Lionello, P. (2013). Characteristics of large positive and negative surges in the Mediterranean Sea and their attenuation in future climate scenarios. Global and Planetary Change, 111, 159–173.

    Article  Google Scholar 

  47. Cushman-Roisin, B., & Naimie, C. E. (2002). A 3d finite-element model of the Adriatic tides. Journal of Marine Systems, 37, 279–297.

    Article  Google Scholar 

  48. Cushman-Roisin, B., Willmott, A. J., & Biggs, N. R. T. (2005). Influence of stratification on decaying surface seiche modes. Continental Shelf Research, 25, 227–242.

    Article  Google Scholar 

  49. Cutter, S. L., Barnes, L., Berry, M., Burton, C., Evans, E., Tate, E., et al. (2008). A place-based model for understanding community resilience to natural disasters. Global Environmental Change – Human and Policy Dimensions, 18, 598–606.

    Article  Google Scholar 

  50. De Vries, H., Breton, M., De Mulder, T., Krestenitis, Y., Ozer, J., Proctor, R., et al. (1995). A comparison of 2D storm surge models applied to three shallow European seas. Environmental Software, 10, 23–42.

    Article  Google Scholar 

  51. De Zolt, S., Lionello, P., Nuhu, A., & Tomasin, A. (2006). The disastrous storm of 4 November 1966 on Italy. Natural Hazards and Earth System Sciences, 6, 861–879.

    Article  Google Scholar 

  52. Defant, A. (1911). Ueber die Periodendauer der Eigenschwingungen des Adriatischen Meeres. Annalen der Hydrographie und Maritimen Meteorologie, 39, 119–130.

    Google Scholar 

  53. Defant, A. (1961). Physical oceanography (Vol. II). Oxford: Pergamon Press.

    Google Scholar 

  54. Di Donato, G., Negredo, A. M., Sabadini, R., & Vermerrsen, L. L. A. (1999). Multiple processes causing sea-level rise in the Central Mediterranean. Geophysical Research Letters, 26, 1769–1772.

    Article  Google Scholar 

  55. Donati, V. (1758). Essai sur l’Histoire Naturelle de la Mer Adriatique. La Haye: Pierre de Hondt.

  56. Douglas, B. C. (1992). Global sea level acceleration. Journal of Geophysical Research, 97(C8), 12699–12706.

    Article  Google Scholar 

  57. Douglas, B. C. (1997). Global sea level rise: A redetermination. Surveys in Geophysics, 18, 279–292.

    Article  Google Scholar 

  58. Dovier, A., Manca, B., & Mosetti, F. (1974). I periodi di oscillazione del Golfo di Trieste calcolati con un nuovo metodo. Rivista Italiana di Geofisica, 23, 64–70.

    Google Scholar 

  59. Dubois, C., Somot, S., Calmanti, S., Carillo, A., Déqué, M., Dell’Aquilla, A., et al. (2012). Future projections of the surface heat and water budgets of the Mediterranean Sea in an ensemble of coupled atmosphere–ocean regional climate models. Climate Dynamics, 39, 1859–1884.

    Article  Google Scholar 

  60. Dunić, N., Vilibić, I., Šepić, J., Somot, S., & Sevault, F. (2016). Dense water formation and BiOS-induced variability in the Adriatic Sea simulated using an ocean regional circulation model. Climate Dynamics, in press. doi:10.1007/s00382-016-3310-5.

    Google Scholar 

  61. Dusterhus, A., Rovere, A., Carlson, A. E., Horton, B. P., Klemann, V., Tarasov, L., et al. (2016). Palaeo-sea-level and palaeo-ice-sheet databases: Problems, strategies, and perspectives. Climate of the Past, 12, 911–921.

    Article  Google Scholar 

  62. Emery, K. O., & Aubrey, D. G. (1991). Sea levels, land levels, and tide gauges. New York: Springer.

    Google Scholar 

  63. Enzi, S., & Camuffo, D. (1995). Documentary sources of the sea surges in Venice from AD 787 to 1867. Natural Hazards, 12, 225–287.

    Google Scholar 

  64. Faivre, S., Bakran-Petricioli, T., & Horvatinčić, N. (2010). Relative sea-level change during the Late Holocene on the Island of Vis (Croatia)—Issa Harbour archaeological site. Geodinamica Acta, 23, 209–223.

    Article  Google Scholar 

  65. Faivre, S., Bakran-Petricioli, T., Horvatinčić, N., & Sironić, A. (2013). Distinct phases of relative sea level changes in the central Adriatic during the last 1500 years—influence of climatic variations? Palaeogeography, Palaeoclimatology, Palaeoecology, 369, 163–174.

    Article  Google Scholar 

  66. Faivre, S., Fouache, E., Ghilardi, M., Antonioli, F., Furlani, S., & Kovačić, V. (2011). Relative sea level change in western Istria (Croatia) during the last millennium. Quaternary International, 232, 132–143.

    Article  Google Scholar 

  67. Feng, X. B., Tsimplis, M. N., Marcos, M., Calafat, F. M., Zheng, J. H., Jorda, G., et al. (2015). Spatial and temporal variations of the seasonal sea level cycle in the northwest Pacific. Journal of Geophysical Research, 120, 7091–7112.

    Google Scholar 

  68. Feng, H., & Vandemark, D. (2011). Altimeter data evaluation in the coastal Gulf of Maine and Mid-Atlantic Bight regions. Marine Geodesy, 34, 340–363.

    Article  Google Scholar 

  69. Fenoglio-Marc, L., Braitenberg, C., & Tunini, L. (2012). Sea level variability and trends in the Adriatic Sea in 1993–2008 from tide gauges and satellite altimetry. Physics and Chemistry of the Earth, 40–41, 47–58.

    Article  Google Scholar 

  70. Fenoglio-Marc, L., Kusche, J., & Becker, M. (2006). Mass variation in the Mediterranean Sea from GRACE and its validation by altimetry, steric and hydrologic fields. Geophysical Research Letters, 33, L19606. doi:10.1029/2006GL026851.

    Article  Google Scholar 

  71. Ferla, M., Cordella, M., Michielli, L., & Rusconi, L. (2007). Long-term variations on sea level and tidal regime in the lagoon of Venice. Estuarine, Coastal and Shelf Science, 75, 214–222.

    Article  Google Scholar 

  72. Flemming, N. C. (1969). Archaeological evidence for eustatic changes of sea level and earth movements in the Western Mediterranean in the last 2000 years. Geological Society of America Special Paper, 109, 1–125.

    Article  Google Scholar 

  73. Florido, E., Auriemma, R., Faivre, S., Radić Rossi, I., Antonioli, F., Furlani, S., et al. (2011). Istrian and Dalmatian fishtanks as sea-level markers. Quaternary International, 232, 105–113.

    Article  Google Scholar 

  74. Fortis, A. (1774). Viaggio in Dalmazia. Venezia: A. Milocco.

  75. Fouache, E., Faivre, S., Gluščević, S., Kovačić, V., Tassaux, F., & Dufaure, J. (2006). Evolution on the Croatian shore line between Poreč and Split over the past 2000 years. Archaeologia Maritima Mediterranea—An International Journal on Underwater Archaeology, 2, 115–134.

    Google Scholar 

  76. Fukumori, I., Menemenlis, D., & Lee, T. (2007). A near-uniform basin-wide sea level fluctuation of the Mediterranean Sea. Journal of Physical Oceanography, 37, 338–358.

    Article  Google Scholar 

  77. Furlani, S., Biolchi, S., Cucchi, F., Antonioli, F., Busetti, M., & Melis, R. (2011). Tectonic effects on Late Holocene sea level changes in the Gulf of Trieste (NE Adriatic Sea, Italy). Quaternary International, 232, 144–157.

    Article  Google Scholar 

  78. Gačić, M., Borzelli, G. L. E., Civitarese, G., Cardin, V., & Yari, S. (2010). Can internal processes sustain reversals of the ocean upper circulation? The Ionian Sea example. Geophysical Research Letters, 37, L09608. doi:10.1029/2010GL043216.

    Article  Google Scholar 

  79. Gaertner, M. A., Jacob, D., Gil, V., Domínguez, M., Padorno, E., Sánchez, E., et al. (2007). Tropical cyclones over the Mediterranean Sea in climate change simulations. Geophysical Research Letters, 34, L14711. doi:10.1029/2007GL029977.

    Article  Google Scholar 

  80. Galassi, G., & Spada, G. (2014). Sea-level rise in the Mediterranean Sea by 2050: Roles of terrestrial ice melt, steric effects and glacial isostatic adjustment. Global and Planetary Change, 123, 55–66.

    Article  Google Scholar 

  81. Galilei, G. (1632). Dialogo sopra i due massimi sistemi del mondo, tolemaico e copernicano. Fiorenza: G. B. Landini.

  82. García Lafuente, J., Alvarez Fanjul, E., Vargas, J. M., & Ratsimandresy, A. W. (2002). Subinertial variability in the flow through the Strait of Gibraltar. Journal of Geophysical Research, 107(C10), 3168. doi:10.1029/2001JC001104.

    Article  Google Scholar 

  83. García, D., Vigo, I., Chao, B. F., & Martínez, M. C. (2007). Vertical crustal motion along the Mediterranean and Black Sea coast derived from ocean altimetry and tide gauge data. Pure and Applied Geophysics, 164, 851–863.

    Article  Google Scholar 

  84. Garrett, C. (1983). Variable sea level and strait flows in the Mediterranean: A theoretical study of the response to meteorological forcing. Oceanologica Acta, 6, 79–87.

    Google Scholar 

  85. Garrett, C., & Majaess, F. (1984). Nonisostatic response of sea level to atmospheric pressure in the eastern Mediterranean. Journal of Physical Oceanography, 14, 656–665.

    Article  Google Scholar 

  86. Gill, A. E., & Niiler, P. P. (1973). The theory of the seasonal variability in the ocean. Deep-Sea Research, 20, 141–177.

    Google Scholar 

  87. Giorgi, F. (2006). Climate change hot-spots. Geophysical Research Letters, 33, L08707.

    Article  Google Scholar 

  88. Giorgi, F., & Lionello, P. (2008). Climate change projections for the Mediterranean region. Global and Planetary Change, 63, 90–104.

    Article  Google Scholar 

  89. Godin, G., & Trotti, L. (1975). Trieste, water levels 1952–1971: A study of the tide, mean level and seiche activity. Fisheries and Marine Service in Ottawa, Miscellaneous Special Publication, 28, 1–24.

    Google Scholar 

  90. Goldberg, J., & Kempni, K. (1937). Ueber die Schwingungen der Bucht von Bakar und das allgemeine Problem der Seiches von Buchten. Bulletin International de l’Académie Yougoslave des Sciences et des Beaux-Arts, Classe des Sciences Mathématiques et Naturelles, 31, 74–136.

    Google Scholar 

  91. Gomis, D., Ruiz, S., Sotillo, M. G., Álvarez-Fanjul, E., & Terradas, J. (2008). Low frequency Mediterranean sea level variability: The contribution of atmospheric pressure and wind. Global and Planetary Change, 63, 215–229.

    Article  Google Scholar 

  92. Gomis, D., Tsimplis, M., Marcos, M., Fenoglio-Marc, L., Pérez, B., Raicich, F., et al. (2012). Mediterranean sea-level variability and trends. In P. Lionello (Ed.), The climate of the Mediterranean Region: From past to the future (pp. 257–299). Amsterdam: Elsevier.

    Google Scholar 

  93. Gratzl, A. (1891). Ueber die durch Boeen verursachten stehenden Wellen (Seiches) im Hafen von Pola und in der Bucht von Triest. Meteorologische Zeitschrift, 8, 309–310.

    Google Scholar 

  94. Grisogono, B., & Belušić, D. (2009). A review of recent advances in understanding the meso- and microscale properties of the severe Bora wind. Tellus A, 61, 1–16.

    Article  Google Scholar 

  95. Grund, A. (1907). Die Entstehung und Geschichte des Adriatischen Meeres. Geographischer Jahresbericht aus Oesterreich, 7, 1–14.

    Google Scholar 

  96. Gualdi, S., Somot, S., Wilhelm, M., Castellari, S., Déqué, M., Adani, M., Artale, V., Bellucci, A., Breitgand, J.S., Carillo, A., Cornes, R., Dell’Aquila, A., Dubois, C., Efthymiadis, D., Elizalde, A., Gimeno, L., Goodess, C.M., Harzallah, A., Krichak, S.O., Kuglitsch, F.G., Leckebusch, G.C., L’Hévéder, B., Li, L., Lionello, P., Luterbacher, J., Mariotti, A., Navarra, A., Nieto, R., Nissen, K.M., Oddo, P., Ruti, P., Sanna, A., Sannino, G., Scoccimarro, E., Sevault, F., Struglia, M.V., Toreti, A., Ulbrich, U., & Xoplaki, E. (2013). Future climate projections. In A. Navarra, & L. Tubiana, (Eds.), Regional assessment of the climate change in the Mediterranean: Air, sea and precipitation and water, Advances in Global Change Research, Vol. 50 (pp. 53–118). Heidelberg: Springer.

  97. Guidoboni, E., & Tinti, S. (1988). A review of the historical 1627 tsunami in the Southern Adriatic. Science of Tsunami Hazards, 1, 11–16.

    Google Scholar 

  98. Hendershott, M. C., & Speranza, A. (1971). Co-oscillating tides in long, narrow bays; the Taylor problem revisited. Deep Sea Research, 18, 959–980.

    Google Scholar 

  99. Herak, M., Orlić, M., & Kunovec-Varga, M. (2001). Did the Makarska earthquake of 1962 generate a tsunami in the central Adriatic archipelago? Journal of Geodynamics, 31, 71–86.

    Article  Google Scholar 

  100. Hibiya, T., & Kajiura, K. (1982). Origin of the Abiki phenomenon (a kind of seiche) in Nagasaki Bay. Journal of the Oceanographic Society of Japan, 38, 172–182.

    Article  Google Scholar 

  101. Hinkel, J., Jaeger, C., Nicholls, R. J., Lowe, J., Renn, O., & Peijun, S. (2015). Sea-level rise scenarios and coastal risk management. Nature Climate Change, 5, 188–190.

    Article  Google Scholar 

  102. Hinkel, J., Lincke, D., Vafeidis, A. T., Perrette, M., Nicholls, R. J., Tole, R. S. J., et al. (2014). Coastal flood damage and adaptation costs under 21st century sea-level rise. Proceedings of the National Academy of Sciences, 111, 3292–3297.

    Article  Google Scholar 

  103. Hodžić, M. (1979/1980). Occurrences of exceptional sea-level oscillations in the Vela Luka Bay (in Croatian). Priroda, 68, 52–53.

  104. Janeković, I., Bobanović, J., & Kuzmić, M. (2003). The Adriatic Sea M2 and K1 tides by 3D model and data assimilation. Estuarine, Coastal and Shelf Science, 57, 873–885.

    Article  Google Scholar 

  105. Janeković, I., & Kuzmić, M. (2005). Numerical simulation of the Adriatic Sea principal tidal constituents. Annales Geophysicae, 23, 1–12.

    Article  Google Scholar 

  106. Janeković, I., Mihanović, H., Vilibić, I., & Tudor, M. (2014). Extreme cooling and dense water formation estimates in open and coastal regions of the Adriatic Sea during the winter of 2012. Journal of Geophysical Research, 119, 3200–3218.

    Google Scholar 

  107. Jansà, A., Monserrat, S., & Gomis, D. (2007). The rissaga of 15 June 2006 in Ciutadella (Menorca), a meteorological tsunami. Advances in Geosciences, 12, 1–4.

    Article  Google Scholar 

  108. JCOMM (2010). Decision Matrix for the Mediterranean, Accessed on Nov 27, 2016 from http://www.jcomm.info/index.php?option=com_oe&task=viewDocumentRecord&docID=6422

  109. Jönsson, B., Döös, K., Nycander, J., & Lundberg, P. (2008). Standing waves in the Gulf of Finland and their relationship to the basin-wide Baltic seiches. Journal of Geophysical Research, 113, C03004. doi:10.1029/2006JC003862.

    Google Scholar 

  110. Joó, I., Csáti, E., Jovanović, P., Popescu, M., Somov, V. I., Thurm, H., et al. (1981). Recent vertical crustal movements of the Carpatho-Balkan region. Tectonophysics, 71, 41–52.

    Article  Google Scholar 

  111. Jordà, G., & Gomis, D. (2013). On the interpretation of the steric and mass components of sea level variability: The case of the Mediterranean basin. Journal of Geophysical Research, 118, 953–963.

    Google Scholar 

  112. Jordà, G., Gomis, D., Álvarez-Fanjul, E., & Somot, S. (2012). Atmospheric contribution to Mediterranean and nearby Atlantic sea level variability under different climate change scenarios. Global and Planetary Change, 80–81, 198–214.

    Article  Google Scholar 

  113. Karabeg, M., & Orlić, M. (1982). The influence of air pressure on sea level in the North Adriatic—a frequency-domain approach. Acta Adriatica, 23, 21–27.

    Google Scholar 

  114. Kasumović, M. (1958). Ueber die Wirkung des Luftdrucks und des Windes auf die Wasserstandschwankungen in der Adria (in Kroatisch). Hidrografski godišnjak, 1956(1957), 107–121.

    Google Scholar 

  115. Kasumović, M. (1963). Langperiodische Freie Schwingungen in der Adria (in Kroatisch). Rasprave odjela za matematičke, fizičke i tehničke nauke JAZU, 2(4), 121–166.

    Google Scholar 

  116. Kasumović, M. (1968). Histoire du développement de la théorie des marées dans la mer Adriatique. Bulletin, Institut océanographique, Monaco, 2, 55–62.

    Google Scholar 

  117. Kesslitz, W. (1910). Das Gezeitenphaenomen im Hafen von Pola. Mitteilungen aus dem Gebiete des Seewesens, 38, 445–608.

    Google Scholar 

  118. Kesslitz, W. (1911). Die Sturmflut am 15. und 16. November 1910 in Pola. Mitteilungen aus dem Gebiete des Seewesens, 39, 157–163.

    Google Scholar 

  119. Kesslitz, W. (1919). Die Gezeitenerscheinungen in der Adria, I. Teil, Die Beobachtungsergebnisse der Flutstationen. Denkschrifte, Akademie der Wissenschaften in Wien, Matematisch-naturwissenschaftliche Klasse, 96, 175–275.

    Google Scholar 

  120. King, M. A., Keshin, M., Whitehouse, P. L., Thomas, I. D., Milne, G., & Riva, R. E. M. (2012). Regional biases in absolute sea-level estimates from tide gauge data due to residual unmodeled vertical land movement. Geophysical Research Letters, 39, L14604. doi:10.1029/2012GL052348.

    Article  Google Scholar 

  121. Kuzmić, M., Grisogono, B., Li, X. M., & Lehner, S. (2015). Examining deep and shallow Adriatic bora events. Quarterly Journal of the Royal Meteorological Society, 141, 3434–3438.

    Article  Google Scholar 

  122. Lambeck, K., Antonioli, F., Anzidei, M., Ferranti, L., Leoni, G., Scicchitano, G., et al. (2011). Sea level change along the Italian coast during the Holocene and projections for the future. Quaternary International, 232, 250–257.

    Article  Google Scholar 

  123. Lambeck, K., Antonioli, F., Purcell, A., & Silenzi, S. (2004). Sea level change along the Italian coast for the past 10,000 yrs. Quaternary Science Reviews, 23, 1567–1598.

    Article  Google Scholar 

  124. Lambeck, K., & Purcell, A. (2005). Sea-level change in the Mediterranean Sea since the LGM: Model predictions for tectonically stable areas. Quaternary Science Reviews, 24, 1969–1988.

    Article  Google Scholar 

  125. Landerer, F. W., & Volkov, D. L. (2013). The anatomy of recent large sea level fluctuations in the Mediterranean Sea. Geophysical Research Letters, 40, 553–557.

    Article  Google Scholar 

  126. Larnicol, G., Ayoub, N., & Le Traon, P. Y. (2002). Major changes in Mediterranean Sea level variability from 7 years of TOPEX/Poseidon and ERS-1/2 data. Journal of Marine Systems, 33(34), 63–89.

    Article  Google Scholar 

  127. Lascaratos, A., & Gačić, M. (1990). Low-frequency sea level variability in the northeastern Mediterranean. Journal of Physical Oceanography, 20, 522–533.

    Article  Google Scholar 

  128. Le Traon, P.-Y., & Gauzelin, P. (1997). Response of the Mediterranean mean sea level to atmospheric pressure forcing. Journal of Geophysical Research, 102(C1), 973–984.

    Article  Google Scholar 

  129. Leder, N., & Orlić, M. (2004). Fundamental Adriatic seiche recorded by current meters. Annales Geophysicae, 22, 1449–1464.

    Article  Google Scholar 

  130. Levermann, A., Griesel, A., Hofmann, M., Montoya, M., & Rahmstorf, S. (2005). Dynamic sea level changes following changes in the thermohaline circulation. Climate Dynamics, 24, 347–354.

    Article  Google Scholar 

  131. Li, C., von Storch, J. S., & Marotzke, J. (2013). Deep-ocean heat uptake and equilibrium climate response. Climate Dynamics, 40, 1071–1086.

    Article  Google Scholar 

  132. Lionello, P., Cavaleri, L., Nissen, K. M., Pino, C., Raicich, F., & Ulbrich, U. (2012a). Severe marine storms in the Northern Adriatic: Characteristics and trends. Physics and Chemistry of the Earth, 40–41, 93–105.

    Article  Google Scholar 

  133. Lionello, P., Galati, M. B., & Elvini, E. (2012b). Extreme storm surge and wind wave climate scenario simulations at the Venetian littoral. Physics and Chemistry of the Earth, 40–41, 86–92.

    Article  Google Scholar 

  134. Lionello, P., Mufato, R., & Tomasin, A. (2005). Sensitivity of free and forced oscillations of the Adriatic Sea to sea level rise. Climate Change, 29, 23–39.

    Google Scholar 

  135. Lionello, P., Sanna, A., Elvini, E., & Mufato, R. (2006). A data assimilation procedure for operational prediction of storm surge in the northern Adriatic Sea. Continental Shelf Research, 26, 539–553.

    Article  Google Scholar 

  136. Lionello, P., Zampato, L., Malguzzi, P., Tomasin, A., & Bergamasco, A. (1998). On the correct surface stress for the prediction of the wind wave field and the storm surge in the Northern Adriatic Sea. Il Nuovo Cimento C, 21, 515–532.

    Google Scholar 

  137. Lo Presti, V., Antonioli, F., Auriemma, R., Ronchitelli, A., Scicchitano, G., Spampinato, C. R., et al. (2014). Millstone coastal quarries of the Mediterranean: A new class of sea level indicator. Quaternary International, 332, 126–142.

    Article  Google Scholar 

  138. Lombard, A., Garcia, D., Ramillien, G., Cazenave, A., Biancale, R., Lemome, J. M., et al. (2007). Estimation of steric sea level variations from combined GRACE and Jason-1 data. Earth and Planetary Science Letters, 254, 194–202.

    Article  Google Scholar 

  139. Lončar, G., Carević, D., & Paladin, M. (2010). The (im)possibility of reducing the meteotsunami amplitude by constructing protective breakwaters. Tehnički vjesnik—Technical Gazette, 17, 217–222.

    Google Scholar 

  140. Lorbacher, K., Dengg, J., Boning, C. W., & Biastoch, A. (2010). Regional patterns of sea level change related to interannual variability and multidecadal trends in the Atlantic meridional overturning circulation. Journal of Climate, 23, 4243–4254.

    Article  Google Scholar 

  141. Lorbacher, K., Marsland, S. J., Church, J. A., Griffies, S. M., & Stammer, D. (2012). Rapid barotrophic sea-level rise from ice-sheet melting scenarios. Journal of Geophysical Research, 117, C06003.

    Article  Google Scholar 

  142. Lorenz, J. R. (1863). Physicalische Verhaeltnisse und Vertheilung der Organismen im Quarnerischen Golfe. Wien: Hof- und Staatsdruckerei.

    Google Scholar 

  143. Lorito, S., Selva, J., Basili, R., Romano, F., Tiberti, M. M., & Piatanesi, A. (2015). Probabilistic hazard for seismically induced tsunamis: Accuracy and feasibility of inundation maps. Geophysical Journal International, 200, 574–588.

    Article  Google Scholar 

  144. Lozano, C. J., & Candela, J. (1995). The M2 tide in the Mediterranean Sea: Dynamic analysis and data assimilation. Oceanologica Acta, 18, 419–441.

    Google Scholar 

  145. Malačič, V., & Viezzoli, D. (2000). Tides in the northern Adriatic Sea—the Gulf of Trieste. Il Nuovo Cimento C, 23, 365–382.

    Google Scholar 

  146. Malačič, V., Viezzoli, D., & Cushman-Roisin, B. (2000). Tidal dynamics in the northern Adriatic Sea. Journal of Geophysical Research, 105, 26265–26280.

    Article  Google Scholar 

  147. Manca, B., Mosetti, F., & Zennaro, P. (1974). Analisi spettrale delle sesse dell’Adriatico. Bolletino di Geofisica Teorica ed Applicata, 16, 51–60.

    Google Scholar 

  148. Maramai, A., Brizuela, B., & Graziani, L. (2014). The Euro-Mediterranean tsunami catalogue. Annals of Geophysics, 57, S0435. doi:10.4401/ag-6437.

    Google Scholar 

  149. Maramai, A., Graziani, L., & Tinti, S. (2007). Investigation on tsunami effects in the central Adriatic Sea during the last century—a contribution. Natural Hazards and Earth System Sciences, 7, 15–19.

    Article  Google Scholar 

  150. Marcos, M., Jordà, G., Gomis, D., & Pérez, B. (2011). Changes in storm surges in southern Europe from a regional model under climate change scenarios. Global and Planetary Change, 77, 116–128.

    Article  Google Scholar 

  151. Marcos, M., Monserrat, S., Medina, R., Orfila, A., & Olabarrieta, M. (2009a). External forcing of meteorological tsunamis at the coast of the Balearic Islands. Physics and Chemistry of the Earth, 34, 938–947.

    Article  Google Scholar 

  152. Marcos, M., & Tsimplis, M. N. (2007). Variations of the seasonal sea level cycle in southern Europe. Journal of Geophysical Research, 112, C12011. doi:10.1029/2006JC004049.

    Article  Google Scholar 

  153. Marcos, M., & Tsimplis, M. N. (2008). Comparison of AOGCMs in the Mediterranean Sea during the 21st century. Journal of Geophysical Research, 113, C12028. doi:10.1029/2008JC004820.

    Article  Google Scholar 

  154. Marcos, M., Tsimplis, M. N., & Shaw, A. G. P. (2009b). Sea level extremes in southern Europe. Journal of Geophysical Research. doi:10.1029/2008JC004912.

    Google Scholar 

  155. Marriner, M., Morhange, C., Faivre, S., Flaux, C., Vacchi, M., Miko, S., et al. (2014). Post-Roman sea-level changes on Pag Island (Adriatic Sea): dating Croatia’s “enigmatic” coastal notch? Geomorphology, 221, 83–94.

    Article  Google Scholar 

  156. Marzocchi, W., & Mulargia, F. (1996). Scale analysis to sort the different causes of mean sea level changes: An application to the northern Adriatic Sea. Geophysical Research Letters, 23, 1119–1122.

    Article  Google Scholar 

  157. Masina, M., & Lamberti, A. (2013). A nonstationary analysis for the Northern Adriatic extreme sea levels. Journal of Geophysical Research, 118, 3999–4016.

    Google Scholar 

  158. Massalin, A., Zampato, L., Papa, A., & Canestrelli, P. (2007). Data monitoring and sea level forecasting in the Venice Lagoon: The ICPSM’s activity. Bollettino di Geofisica Teorica ed Applicata, 48, 241–257.

    Google Scholar 

  159. Mawdsley, R. J., Haigh, I. D., & Wells, N. C. (2015). Global secular changes in different tidal high water, low water and range levels. Earths Future, 3, 66–81.

    Article  Google Scholar 

  160. Međugorac, I., Pasarić, M., & Orlić, M. (2015). Severe flooding along the eastern Adriatic coast: The case of 1 December 2008. Ocean Dynamics, 65, 817–830.

    Article  Google Scholar 

  161. Mel, R., & Lionello, P. (2014a). Storm surge ensemble prediction for the city of Venice. Weather and Forecasting, 29, 1044–1057.

    Article  Google Scholar 

  162. Mel, R., & Lionello, P. (2014b). Verification of an ensemble prediction system for storm surge forecast in the Adriatic Sea. Ocean Dynamics, 64, 1803–1814.

    Article  Google Scholar 

  163. Mel, R., & Lionello, P. (2016). Probabilistic dressing of a storm surge prediction in the Adriatic Sea. Advances in Meteorology, 2016, 3764519. doi:10.1155/2016/3764519.

    Article  Google Scholar 

  164. Mel, R., Sterl, A., & Lionello, P. (2013). High resolution climate projection of storm surge at the Venetian coast. Natural Hazards and Earth System Sciences, 13, 1135–1142.

    Article  Google Scholar 

  165. Mel, R., Viero, D. P., Carniello, L., Defina, A., & D’Alpaos, L. (2014). Simplified methods for real-time prediction of storm surge uncertainty: The city of Venice case study. Advances in Water Resources, 71, 177–185.

    Article  Google Scholar 

  166. Michelato, A., Mosetti, F., & Purga, N. (1985). Sea level oscillations in the Adriatic Sea computed by mathematical models. Bolletino di Geofisica Teorica ed Applicata, 3, 57–77.

    Google Scholar 

  167. Michelato, A., Mosetti, R., & Viezzoli, D. (1983). Statistical forecasting of storm surges—An application to the Lagoon of Venice. Bollettino di Oceanologia Teorica ed Applicata, 1, 67–76.

    Google Scholar 

  168. Mikolajewicz, U. (2011). Modeling Mediterranean ocean climate of the Last Glacial Maximum. Climate of the Past, 7, 161–180.

    Article  Google Scholar 

  169. Milojević, B. Ž. (1926). The Murter Island (in Serbian). Glasnik geografskog društva, 12, 65–74.

    Google Scholar 

  170. Minisini, D., Trincardi, F., & Asioli, A. (2006). Evidence of slope instability in the Southwestern Adriatic Margin. Natural Hazards and Earth System Sciences, 6, 1–20.

    Article  Google Scholar 

  171. Monserrat, S., Vilibić, I., & Rabinovich, A. B. (2006). Meteotsunamis: Atmospherically induced destructive ocean waves in the tsunami frequency band. Natural Hazards and Earth System Sciences, 6, 1035–1051.

    Article  Google Scholar 

  172. Mosetti, F. (1961). Sulla tendenza secolare del livello medio marino a Trieste. Atti dell’Istituto Veneto di Scienze, Lettere ed Arti, Classe di Scienze Matematiche e Naturali, 119, 425–434.

    Google Scholar 

  173. Mosetti, F., & Bartole, R. (1974). Esame dell’effetto del vento sui sollevamenti di livello dell’Adriatico settentrionale. Rivista Italiana di Geofisica, 23, 71–74.

    Google Scholar 

  174. Mosetti, F., Crisciani, F., & Ferraro, S. (1989). On the relation between sea level and air temperature. Bollettino di oceanologia teorica ed applicata, 7, 263–272.

    Google Scholar 

  175. Mosetti, F., & Purga, N. (1983). Free oscillations of the Adriatic Sea. Comparison and discussion of some results by old models and recent experimental investigations. Bolletino di Oceanologia Teorica ed Applicata, 1, 277–310.

    Google Scholar 

  176. Nicholls, R. J., & Cazenave, A. (2010). Sea-level rise and its impact on coastal zones. Science, 328, 1517–1520.

    Article  Google Scholar 

  177. Nicolich, R. (2010). Geophysical investigation of the crust of the Upper Adriatic and neighbouring chains. Rendiconti, Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, 21(Suppl. 1), S15–S30.

    Article  Google Scholar 

  178. Okal, E. A. (2015). The quest for wisdom: Lessons from 17 tsunamis, 2004–2014. Philosophical Transactions of the Royal Society A, 373, 20140370. doi:10.1098/rsta.2014.0370.

    Article  Google Scholar 

  179. Okihiro, M., Guza, R. T., & Seymour, R. J. (1993). Excitation of seiche observed in a small harbour. Journal of Geophysical Research, 98, 18201–18211.

    Article  Google Scholar 

  180. Orlić, M. (1980). About a possible occurrence of the Proudman resonance in the Adriatic. Thalassia Jugoslavica, 16, 79–88.

    Google Scholar 

  181. Orlić, M. (1983). On the frictionless influence of planetary atmospheric waves on the Adriatic Sea level. Journal of Physical Oceanography, 13, 1301–1306.

    Article  Google Scholar 

  182. Orlić, M. (1983/1984). Are there tsunamis in the Adriatic? (in Croatian). Priroda, 72, 310–311.

  183. Orlić, M. (1993). A simple model of buoyancy-driven seasonal variability in the oceans. Bollettino di Oceanologia Teorica ed Applicata, 11, 93–101.

    Google Scholar 

  184. Orlić, M. (2001). Anatomy of sea level variabilityand example from the Adriatic. In F. El-Hawary, (Ed.), The ocean engineering handbook (pp. 1.1–1.14). London: CRC Press.

    Google Scholar 

  185. Orlić, M. (2015). The first attempt at cataloguing tsunami-like waves of meteorological origin in Croatian coastal waters. Acta Adriatica, 56, 83–96.

    Google Scholar 

  186. Orlić, M., Belušić, D., Janeković, I., & Pasarić, M. (2010). Fresh evidence relating the great Adriatic surge of 21 June 1978 to mesoscale atmospheric forcing. Journal of Geophysical Research, 115, C06011. doi:10.1029/2009JC005777.

    Article  Google Scholar 

  187. Orlić, M., Kuzmić, M., & Pasarić, Z. (1994). Response of the Adriatic Sea to the bora and sirocco forcing. Continental Shelf Research, 14, 91–116.

    Article  Google Scholar 

  188. Orlić, M., & Pasarić, M. (1994). Adriatic Sea level and global climatic changes (in Croatian). Pomorski zbornik, 32, 481–501.

    Google Scholar 

  189. Orlić, M., & Pasarić, M. (1997). Seven decades of sea-level measurements in the Bakar Bay (in Croatian). Natural History Researches of the Rijeka region, Natural History Library, Rijeka, 1, 201–209.

    Google Scholar 

  190. Orlić, M., & Pasarić, M. (2000). Sea-level changes and crustal movements recorded along the east Adriatic coast. Il Nuovo Cimento C, 23, 351–364.

    Google Scholar 

  191. Orlić, M., & Pasarić, M. (2013a). Is the Mediterranean Sea level rising again? Rapports et procès-verbaux des réunions CIESMM, 40, 205.

    Google Scholar 

  192. Orlić, M., & Pasarić, Z. (2013b). Semi-empirical versus process-based sea-level projections for the twenty-first century. Nature Climate Change, 3, 735–738.

    Article  Google Scholar 

  193. Orlić, M., & Pasarić, Z. (2015). Some pitfalls of the semiempirical method used to project sea level. Journal of Climate, 28, 3779–3785.

    Article  Google Scholar 

  194. Pagliarulo, R., Antonioli, F., & Anzidei, M. (2013). Sea level changes since the Middle Ages along the coast of the Adriatic Sea: The case of St. Nicholas Basilica, Bari. Southern Italy. Quaternary International, 288, 139–145.

    Google Scholar 

  195. Palumbo, A., & Mazzarella, A. (1982). Mean sea level variations and their practical applications. Journal of Geophysical Research, 87, 4249–4265.

    Article  Google Scholar 

  196. Pasarić, M., Brizuela, B., Graziani, L., Maramai, A., & Orlić, M. (2012). Historical tsunamis in the Adriatic Sea. Natural Hazards, 61, 281–316.

    Article  Google Scholar 

  197. Pasarić, M., & Orlić, M. (1992). Response of the Adriatic Sea level to the planetary-scale atmospheric forcing. In P. L. Woodworth, (Ed.), Sea level changes—determination and effects, geophysical monograph, vol. 69, pp. 29–39. Washington: American Geophysical Union.

  198. Pasarić, M., & Orlić, M. (2001). Long-term meteorological preconditioning of the North Adriatic coastal floods. Continental Shelf Research, 21, 263–278.

    Article  Google Scholar 

  199. Pasarić, M., & Orlić, M. (2004). Meteorological forcing of the Adriatic—present vs. projected climate conditions. Geofizika, 21, 69–87.

    Google Scholar 

  200. Pasarić, M., Pasarić, Z., & Orlić, M. (2000). Response of the Adriatic Sea level to the air pressure and wind forcing at low frequencies (0.01–0.1 cpd). Journal of Geophysical Research, 105, 11423–11439.

    Article  Google Scholar 

  201. Pasquali, D., Di Risio, M., & De Girolamo, P. (2015). A simplified real time method to forecast semi-enclosed basins storm surge. Estuarine, Coastal and Shelf Science, 165, 61–69.

    Article  Google Scholar 

  202. Patritius, F. (1591). Nova de universis philosophia. Ferrara: B. Mammarelli.

  203. Pattiaratchi, C. B., & Wijeratne, E. M. S. (2015). Are meteotsunamis an underrated hazard? Philosophical Transactions of the Royal Society A, 373, 20140377. doi:10.1098/rsta.2014.0377.

    Article  Google Scholar 

  204. Pattullo, J., Munk, W., Revelle, R., & Strong, E. (1955). The seasonal oscillation in sea level. Journal of Marine Research, 14, 88–155.

    Google Scholar 

  205. Paulatto, M., Pinat, T., & Romanelli, F. (2007). Tsunami hazard scenarios in the Adriatic Sea domain. Natural Hazards and Earth System Sciences, 7, 309–325.

    Article  Google Scholar 

  206. Peltier, W. R., Argus, D. F., & Drummond, R. (2015). Space geodesy constrains ice age terminal deglaciation: The global ICE-6G_C (VM5a) model. Journal of Geophysical Research, 120, 450–487.

    Google Scholar 

  207. Penzar, B., Orlić, M., & Penzar, I. (1980). Sea-level changes in the Adriatic as a consequence of some wave occurrences in the atmosphere. Thalassia Jugoslavica, 16, 51–77.

    Google Scholar 

  208. Petaccia, S., Serravall, R., & Pellicano, F. (2006). Improved method of sea level forecasting at Venice (Northern Adriatic Sea). Communications in Nonlinear Science and Numerical Simulation, 11, 281–296.

    Article  Google Scholar 

  209. Pickering, M. D., Wells, N. C., Horsburgh, K. J., & Green, J. A. M. (2012). The impact of future sea-level rise on the European Shelf tides. Continental Shelf Research, 35, 1–15.

    Article  Google Scholar 

  210. Piecuch, C. G., & Ponte, R. M. (2015). Inverted barometer contributions to recent sea level changes along the northeast coast of North America. Geophysical Research Letters, 42, 5918–5925.

    Article  Google Scholar 

  211. Pinardi, N., Bonaduce, A., Navarra, A., Dobricic, S., & Oddo, P. (2014). The mean sea level equation and its application to the Mediterranean Sea. Journal of Climate, 27, 442–447.

    Article  Google Scholar 

  212. Pirazzoli, P. A. (1986). Secular trends of relative sea-level (RSL) changes indicated by tide-gauge records. Journal of Coastal Research, SI1, 1–26.

    Google Scholar 

  213. Pirazzoli, P. A. (2005). A review of possible eustatic, isostatic and tectonic contributions in eight late-Holocene relative sea-level histories from the Mediterranean area. Quaternary Science Reviews, 24, 1989–2001.

    Article  Google Scholar 

  214. Pirazzoli, P. A., & Tomasin, A. (2002). Recent evolution of surge-related events in the northern Adriatic area. Journal of Coastal Research, 18, 537–554.

    Google Scholar 

  215. Pirazzoli, P. A., & Tomasin, A. (2007/2008). Sea level and surges in the Adriatic Sea area: Recent trends and possible near-future scenarios. Atti dell’Istituto Veneto di Scienze, Lettere ed Arti, 166, 61–83.

  216. Planton, S., Lionello, P., Artale, V., Aznar, R., Carillo, A., Colin, J., et al. (2012). Modelling of the Mediterranean climate system. In P. Lionello (Ed.), Mediterranean climate variability (pp. 449–502). Amsterdam: Elsevier.

    Google Scholar 

  217. Polli, S. (1938). Livelli medi, capisaldi di livellazione e ampiezze della marea nel porto di Trieste. Memorie, R. Comitato Talassografico Italiano, 253, 1–27.

    Google Scholar 

  218. Polli, S. (1947). Analisi periodale delle serie dei livelli marini di Trieste e Venezia. Rivista di Geofisica Pura ed Applicata, 10, 29–40.

    Google Scholar 

  219. Polli, S. (1959). La propagazione delle maree nell’Adriatico. IX Convegno della Associazione Geofisica Italiana, Associazione Geofisica Italiana, Roma, 1959, 1–11.

    Google Scholar 

  220. Pugh, D. T. (1987). Tides, surges and mean sea-level: A handbook for engineers and scientists. Chichester: Wiley.

    Google Scholar 

  221. Rabinovich, A. B. (2009). Seiches and harbour oscillations. In Y. C. Kim, (Ed.), Handbook of coastal and ocean engineering (pp. 193–236). Singapore: World Scientific.

    Google Scholar 

  222. Radić Rossi, I. (2012). Underwater cultural heritage and maritime archaeology in Croatia: An overview. European Journal of Archaeology, 15, 285–308.

    Article  Google Scholar 

  223. Raicich, F. (2003). Recent evolution of sea-level extremes at Trieste (Northern Adriatic). Continental Shelf Research, 23, 225–235.

    Article  Google Scholar 

  224. Raicich, F. (2010). On the contributions of atmospheric pressure and wind to daily sea level in the northern Adriatic Sea. Continental Shelf Research, 30, 1575–1581.

    Article  Google Scholar 

  225. Raicich, F. (2015). Long-term variability of storm surge frequency in the Venice Lagoon: An update thanks to 18th century sea level observations. Natural Hazards and Earth System Sciences, 15, 527–535.

    Article  Google Scholar 

  226. Raicich, F., Orlić, M., Vilibić, I., & Malačič, V. (1999). A case study of the Adriatic seiches (December 1997). Il Nuovo Cimento C, 22, 715–726.

    Google Scholar 

  227. Renault, L., Vizoso, G., Jansà, A., Wilkin, J., & Tintoré, J. (2011). Toward the predictability of meteotsunamis in the Balearic Sea using regional nested atmosphere and ocean models. Geophysical Research Letters, 38, L10601. doi:10.1029/2011GL047361.

    Article  Google Scholar 

  228. Rožić, N. (2001). Fundamental levelling networks and height datums at the territory of the Republic of Croatia. Acta Geodaetica et Geophysica Hungarica, 36, 231–243.

    Article  Google Scholar 

  229. Rožić, N. (2015). Kinematic models of recent motion of the Earth’s crust on the territory of Croatia, Slovenia and Bosnia and Herzegovina. Geofizika, 32, 209–236.

    Article  Google Scholar 

  230. Scarascia, L., & Lionello, P. (2013). Global and regional factors contributing to the past and future sea level rise in the Adriatic Sea. Global and Planetary Change, 106, 51–63.

    Article  Google Scholar 

  231. Schwab, D. J., & Rao, D. B. (1983). Barotropic oscillations of the Mediterranean and Adriatic Seas. Tellus, 35(1), 417–427.

    Article  Google Scholar 

  232. Šegota, T. (1996). Sea level of the Adriatic Sea indicated by Bakar tide-gauge data (in Croatian). Geografski glasnik, 58, 15–32.

    Google Scholar 

  233. Šepić, J., Međugorac, I., Janeković, I., Dunić, N., & Vilibić, I. (2016). Multi-meteotsunami event in the Adriatic Sea generated by atmospheric disturbances of 25–26 June 2014. Pure and Applied Geophysics. doi:10.1007/s00024-016-1249-4.

    Google Scholar 

  234. Šepić, J., & Orlić, M. (2016). Meteorological tsunamis in the Adriatic Sea. http://www.izor.hr/meteotsunami. Accessed 20 July 2017.

  235. Šepić, J., Orlić, M., & Vilibić, I. (2008). The Bakar Bay seiches and their relationship with atmospheric processes. Acta Adriatica, 49(2), 107–123.

    Google Scholar 

  236. Šepić, J., & Vilibić, I. (2011). The development and implementation of a real-time meteotsunami warning network for the Adriatic Sea. Natural Hazards and Earth System Sciences, 11, 83–91.

    Article  Google Scholar 

  237. Šepić, J., Vilibić, I., & Belušić, D. (2009). The source of the 2007 Ist meteotsunami (Adriatic Sea). Journal of Geophysical Research. doi:10.1029/2008JC005092.

    Google Scholar 

  238. Šepić, J., Vilibić, I., & Fine, I. (2015a). Northern Adriatic meteorological tsunamis: Assessment of their potential through ocean modeling experiments. Journal of Geophysical Research, 120, 2993–3010.

    Google Scholar 

  239. Šepić, J., Vilibić, I., Jordà, G., & Marcos, M. (2012). Mediterranean sea level forced by atmospheric pressure and wind: Variability of the present climate and future projections for several period bands. Global and Planetary Change, 86–87, 20–30.

    Article  Google Scholar 

  240. Šepić, J., Vilibić, I., Lafon, A., Macheboeuf, L., & Ivanović, Z. (2015b). High-frequency sea level oscillations in the Mediterranean and their connection to synoptic patterns. Progress in Oceanography, 137, 284–298.

    Article  Google Scholar 

  241. Šepić, J., Vilibić, I., Rabinovich, A. B., & Monserrat, S. (2015c). Widespread tsunami-like waves of 23–27 June in the Mediterranean and Black Seas generated by high-altitude atmospheric forcing. Scientific Reports, 5, 11682.

    Article  Google Scholar 

  242. Sguazzero, P., Giommoni, A., & Goldmann, A. (1972). An empirical model for the prediction of the sea level in Venice (25th ed.). Venice: IBM.

    Google Scholar 

  243. Smith, R. L. (1986). Extreme value theory based on the r largest annual events. Journal of Hydrology, 86, 27–43.

    Article  Google Scholar 

  244. Soloviev, S. L., Solovieva, O. N., Go, C. N., & Shchetnikov, N. A. (2000). Tsunamis in the Mediterranean sea 2000 B.C.—2000 A.D. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  245. Sorensen, C., Broge, N. H., Molgaard, M. R., Schow, C. S., Thomsen, P., Vognsen, K., et al. (2016). Assessing future flood hazards for adaptation planning in a northern European coastal community. Frontiers in Marine Science, 3, 69. doi:10.3389/fmars.2016.00069.

    Article  Google Scholar 

  246. Stammer, D. (2008). Response of the global ocean to Greenland and Antarctic ice melting. Journal of Geophysical Research, 113, C06022. doi:10.1029/2006JC004079.

    Article  Google Scholar 

  247. Sterneck, R. (1914). Ueber ‘Seiches’ an den Kuesten der Adria. Sitzungsberichte, Akademie der Wissenschaften in Wien, Matematisch-naturwissenschaftliche Klasse, 123, 2199–2232.

    Google Scholar 

  248. Sterneck, R. (1915). Zur hydrodynamischen Theorie der Adriagezeiten. Sitzungsberichte, Akademie der Wissenschaften in Wien, Matematisch-naturwissenschaftliche Klasse, 124, 147–180.

    Google Scholar 

  249. Sterneck, R. (1919). Die Gezeitenerscheinungen in der Adria, II. Teil, Die theoretische Erklaerung der Beobachtungs-Tatsachen. Denkschrifte, Akademie der Wissenschaften in Wien, Matematisch-naturwissenschaftliche Klasse, 96, 277–324.

    Google Scholar 

  250. Stocchi, P., & Spada, G. (2009). Influence of glacial isostatic adjustment upon current sea level variations in the Mediterranean. Tectonophysics, 474, 55–68.

    Article  Google Scholar 

  251. Stocchi, P., Spada, G., & Cianetti, G. (2005). Isostatic rebound following the Alpine deglaciation: Impact on the sea level variations and vertical movements in the Mediterranean region. Geophysical Journal International, 162, 137–147.

    Article  Google Scholar 

  252. Stravisi, F. (1973). Analysis of a storm surge in the Adriatic Sea by means of a two-dimensional linear model. Rendiconti, Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, 54, 243–260.

    Google Scholar 

  253. Stravisi, F., & Ferraro, S. (1986). Monthly and annual mean sea levels at Trieste, 1890–1984. Bollettino di oceanologia teorica ed applicata, 4, 97–104.

    Google Scholar 

  254. Surić, M., Korbar, T., & Juračić, M. (2014). Tectonic constraints on the late Pleistocene-Holocene relative sea-level change along the north-eastern Adriatic coast (Croatia). Geomorphology, 220, 93–103.

    Article  Google Scholar 

  255. Syvitski, J. P. M., Kettner, A. J., Overeem, I., Hutton, E. W. H., Hannon, M. T., Brakenridge, G. R., et al. (2009). Sinking deltas due to human activities. Nature Geoscience, 2, 681–686.

    Article  Google Scholar 

  256. Taylor, G. I. (1921). Tidal oscillations in gulfs and rectangular basins. Proceedings of the London Mathematical Society, 2(20), 148–181.

    Google Scholar 

  257. Teferle, F. N., Williams, S. D. P., Kierulf, H. P., Bingley, R. M., & Plag, H. P. (2008). A continuous GPS coordinate time series analysis strategy for high-accuracy vertical land movements. Physics and Chemistry of the Earth, 33, 205–216.

    Article  Google Scholar 

  258. Tiberti, M. M., Lorito, S., Basili, R., Kastelić, V., Piatanesi, A., & Valensis, G. (2008). Scenarios of earthquake-generated tsunamis for the Italian coast of the Adriatic Sea. Pure and Applied Geophysics, 165, 2117–2142.

    Article  Google Scholar 

  259. Tinti, S., Graziani, L., Brizuela, B., Maramai, A., & Galazzi, S. (2012). Applicability of the decision matrix on the North Eastern Atlantic, Mediterranean and connected seas Tsunami Warning System to the Italian tsunamis. Natural Hazards and Earth System Sciences, 12, 843–857.

    Article  Google Scholar 

  260. Tinti, S., & Maramai, A. (1999). Large tsunamis and tsunami hazard from the new Italian tsunami catalog. Physics and Chemistry of the Earth, 24, 151–156.

    Article  Google Scholar 

  261. Tinti, S., Maramai, A., & Favali, P. (1995). The Gargano promontory: An important Italian seismogenic-tsunamigenic area. Marine Geology, 122, 227–241.

    Article  Google Scholar 

  262. Tinti, S., Maramai, A., & Graziani, L. (2004). The new catalogue of the Italian tsunamis. Natural Hazards, 33, 439–465.

    Article  Google Scholar 

  263. Tinti, S., & Piatanesi, A. (1996). Numerical simulations of the tsunami induced by the 1627 eartquake affecting Gargano, Southern Italy. Journal of Geodynamics, 21, 141–160.

    Article  Google Scholar 

  264. Toaldo, T. (1977). De reciproco aestu Maris Veneti. Philosophical Transactions of the Royal Society of London, 67, 145–159.

    Google Scholar 

  265. Tomasin, A., & Frassetto, R. (1979). Cyclogenesis and forecast of dramatic water elevations in Venice. In J. C. J. Nihoul (Ed.), Marine forecasting (pp. 427–438). Amsterdam: Elsevier.

    Google Scholar 

  266. Tosi, L., Teatini, P., & Strozzi, T. (2013). Natural versus anthropogenic subsidence of Venice. Scientific Reports, 3, 2710. doi:10.1038/srep02710.

    Article  Google Scholar 

  267. Tosoni, A., & Canestrelli, P. (2010/2011). Il modelo stocatisco per la previsione di marea a Venezia. Atti dell’Istituto Veneto di Scienze, Lettere ed Arti, 164, 65–86.

  268. Trigo, I. F., & Davies, T. D. (2002). Meteorological conditions associated with sea surges in Venice: A 40 year climatology. International Journal of Climatology, 22, 787–803.

    Article  Google Scholar 

  269. Tsimplis, M. N. (1995). The response of sea level to atmospheric forcing in the Mediterranean. Journal of Coastal Research, 11, 1309–1321.

    Google Scholar 

  270. Tsimplis, M. N., Álvarez-Fanjul, E., Gomis, D., Fenoglio-Marc, L., & Pérez, B. (2005). Mediterranean Sea level trends: Atmospheric pressure and wind contribution. Geophysical Research Letters, 32, L20602. doi:10.1029/2005GL023867.

    Article  Google Scholar 

  271. Tsimplis, M. N., & Baker, T. F. (2000). Sea level drop in the Mediterranean Sea: An indicator of deep water salinity and temperature changes? Geophysical Research Letters, 27(12), 1731–1734.

    Article  Google Scholar 

  272. Tsimplis, M. N., Calafat, F. M., Marcos, M., Jordà, G., Gomis, D., Fenoglio-Marc, L., et al. (2013). The effect of the NAO on sea level and on mass changes in the Mediterranean Sea. Journal of Geophysical Research, 118, 944–952.

    Google Scholar 

  273. Tsimplis, M. N., & Josey, S. A. (2001). Forcing of the Mediterranean Sea by atmospheric oscillations over the North Atlantic. Geophysical Research Letters, 28(5), 803–806.

    Article  Google Scholar 

  274. Tsimplis, M., Marcos, M., & Somot, S. (2008a). 21st century Mediterranean Sea level rise: Steric and atmospheric pressure contributions from a regional model. Global and Planetary Change, 63, 105–111.

    Article  Google Scholar 

  275. Tsimplis, M., Marcos, M., Somot, S., & Barnier, B. (2008b). Sea level forcing in the Mediterranean Sea between 1960 and 2000. Global and Planetary Change, 63, 325–332.

    Article  Google Scholar 

  276. Tsimplis, M. N., Proctor, R., & Flather, R. (1995). A two-dimensional tidal model for the Mediterranean Sea. Journal of Geophysical Research, 100, 16223–16239.

    Article  Google Scholar 

  277. Tsimplis, M. N., Raicich, F., Fenoglio-Marc, L., Shaw, A. G. P., Marcos, M., Somot, S., et al. (2012). Recent developments in understanding sea level rise at the Adriatic coasts. Physics and Chemistry of the Earth, 40–41, 59–71.

    Article  Google Scholar 

  278. Tsimplis, M. N., & Rixen, M. (2002). Sea level in the Mediterranean Sea: The contribution of temperature and salinity changes. Geophysical Research Letters, 29(23), 2136. doi:10.1029/2002GL015870.

    Article  Google Scholar 

  279. Tsimplis, M. N., & Spencer, N. E. (1997). Collection and analysis of monthly mean sea level data in the Mediterranean and the Black Sea. Journal of Coastal Research, 13, 534–544.

    Google Scholar 

  280. Tsimplis, M. N., & Vlahakis, G. N. (1994). Meteorological forcing and sea level variability in the Aegean Sea. Journal of Geophysical Research, 99, 9879–9890.

    Article  Google Scholar 

  281. Tsimplis, M. N., & Woodworth, P. L. (1994). The global distribution of the seasonal sea level cycle calculated from coastal tide gauge data. Journal of Geophysical Research, 99, 16031–16039.

    Article  Google Scholar 

  282. Tushingham, A. M., & Peltier, W. R. (1989). ICE-3G: A new global model of late Pleistocene deglaciation based upon geophysical predictions of post glacial relative sea level change. Journal of Geophysical Research, 96, 4497–4523.

    Article  Google Scholar 

  283. Umgiesser, G., Canu, D. M., Cucco, A., & Solidoro, C. (2004). A finite element model for the Venice Lagoon. Development, set up, calibration and validation. Journal of Marine Systems, 51, 123–145.

    Article  Google Scholar 

  284. Unal, Y. S., & Ghil, M. (1995). Interannual and interdecadal oscillation patterns in sea level. Climate Dynamics, 11, 255–278.

    Article  Google Scholar 

  285. UNESCO. (2009). Tsunami Early Warning and Mitigation System in the North Eastern Atlantic, the Mediterranean and Connected Seas, NEAMTWS, Implementation Plan, Intergovernmental Oceanographic Commission Technical Series (p. 46). Paris: UNESCO.

    Google Scholar 

  286. Vacchi, M., Marriner, N., Morhange, C., Spada, G., Fontana, A., & Rovere, A. (2015). Multiproxy assessment of Holocene relative sea-level changes in the western Mediterranean: Sea-level variability and improvements in the definition of the isostatic signal. Earth-Science Reviews, 155, 172–197.

    Article  Google Scholar 

  287. Vannucci, G., Pondrelli, S., Argnani, A., Morelli, A., Gasperini, P., & Boschi, E. (2004). An atlas of Mediterranean seismicity. Annals of Geophysics, 47, 247–306.

    Google Scholar 

  288. Vera, J. D., Criado-Aldeanueva, F., Garcia-Lafuente, J., & Soto-Navarro, F. J. (2009). A new insight on the decreasing sea level trend over the Ionian basin in the last decades. Global and Planetary Change, 68, 232–235.

    Article  Google Scholar 

  289. Vercelli, F. (1941). Le maree e le sesse nel porto di Zara. La Ricerca Scientifica, 12(1), 1–8.

    Google Scholar 

  290. Vilibić, I., & Šepić, J. (2009). Destructive meteotsunamis along the eastern Adriatic coast: Overview. Physics and Chemistry of the Earth, 34, 904–917.

    Article  Google Scholar 

  291. Vilibić, I. (2000). A climatological study of the uninodal seiche in the Adriatic Sea. Acta Adriatica, 41(2), 89–102.

    Google Scholar 

  292. Vilibić, I. (2005). Numerical study of the Middle Adriatic coastal waters sensitivity to the various air pressure travelling disturbances. Annales Geophysicae, 23, 3569–3578.

    Article  Google Scholar 

  293. Vilibić, I. (2006a). The role of the fundamental seiche in the Adriatic coastal floods. Continental Shelf Research, 26, 206–216.

    Article  Google Scholar 

  294. Vilibić, I. (2006b). Seasonal sea level variations in the Adriatic. Acta Adriatica, 41(2), 141–158.

    Google Scholar 

  295. Vilibić, I. (2008). Numerical simulations of the Proudman resonance. Continental Shelf Research, 28, 574–581.

    Article  Google Scholar 

  296. Vilibić, I., Domijan, N., & Čupić, S. (2005a). Wind versus air pressure seiche triggering in the Middle Adriatic coastal waters. Journal of Marine Systems, 57, 189–200.

    Article  Google Scholar 

  297. Vilibić, I., Domijan, N., Orlić, M., Leder, N., & Pasarić, M. (2004). Resonant coupling of a traveling air-pressure disturbance with the east Adriatic coastal waters. Journal of Geophysical Research, 109, C10001. doi:10.1029/2004JC002279.

    Article  Google Scholar 

  298. Vilibić, I., Leder, N., & Smirčić, A. (2000). Storm surges in the Adriatic Sea: an impact on the coastal infrastructure. Periodicum Biologorum, 102(Suppl. ), 483–488.

    Google Scholar 

  299. Vilibić, I., & Mihanović, H. (2002). A study of seiches in the Split harbour (Adriatic Sea). Acta Adriatica, 43(2), 59–68.

    Google Scholar 

  300. Vilibić, I., & Mihanović, H. (2003). A study of resonant oscillations in the Split harbour (Adriatic Sea). Estuarine, Coastal and Shelf Science, 56, 861–867.

    Article  Google Scholar 

  301. Vilibić, I., & Mihanović, H. (2005). Resonance in Ploče Harbor (Adriatic Sea). Acta Adriatica, 46(2), 125–136.

    Google Scholar 

  302. Vilibić, I., Mihanović, H., Janeković, I., Denamiel, C., Poulain, P.-M., Orlić, M., et al. (2017). Dense water formation in the coastal northeastern Adriatic Sea: The NAdEx 2015 experiment. Ocean Science Discussions. doi:10.5194/os-2017-6. (in review).

    Google Scholar 

  303. Vilibić, I., Monserrat, S., Rabinovich, A. B., & Mihanović, H. (2008). Numerical modeling of a destructive meteotsunami that occurred on 15 June 2006 at the Balearic Islands. Pure and Applied Geophysics, 165, 2169–2195.

    Article  Google Scholar 

  304. Vilibić, I., & Orlić, M. (1999). Surface seiches and internal Kelvin waves observed off Zadar (east Adriatic). Estuarine, Coastal and Shelf Science, 48, 125–136.

    Article  Google Scholar 

  305. Vilibić, I., Orlić, M., Čupić, S., Domijan, N., Leder, N., Mihanović, H., et al. (2005b). A new approach to sea level observations in Croatia. Geofizika, 22, 21–57.

    Google Scholar 

  306. Vilibić, I., & Šepić, J. (2010). Long-term variability and trends of sea level storminess and extremes in European Seas. Global and Planetary Change, 71, 1–12.

    Article  Google Scholar 

  307. Vilibić, I., Šepić, J., Rabinovich, A. B., & Monserrat, S. (2016). Modern approaches in meteotsunami research and early warning. Frontiers in Marine Sciences, 3, 57. doi:10.3389/fmars.2016.00057.

    Google Scholar 

  308. Vučetić, T., & Barčot, T. (2008). Zapisi o plimnom valu u Veloj Luci 21.06.1978. (in Croatian). Municipality of Vela Luka, Institute of Oceanography and Fisheries, Croatia, p. 80.

  309. Vučetić, T., Vilibić, I., Tinti, S., & Maramai, A. (2009). The Great Adriatic flood of 21 June 1978 revisited: An overview of the reports. Physics and Chemistry of the Earth, 34, 894–903.

    Article  Google Scholar 

  310. Wakelin, S. L., & Proctor, R. (2002). The impact of meteorology on modelling storm surges in the Adriatic Sea. Global and Planetary Change, 34, 97–119.

    Article  Google Scholar 

  311. Watson, C. S., White, N. J., Church, J. A., King, M. A., Burgette, R. J., & Legresy, B. (2015). Unabated global mean sea-level rise over the satellite altimeter era. Nature Climate Change, 5, 565–568.

    Article  Google Scholar 

  312. Wolff, C., Vafeidis, A. T., Lincke, D., Marasmi, C., & Hinkel, J. (2016). Effects of scale and input data on assessing the future impacts of coastal flooding: An application of DIVA for the Emilia-Romagna coast. Frontiers in Marine Science, 3, 41. doi:10.3389/fmars.2016.00041.

    Article  Google Scholar 

  313. Woodworth, P. L. (2003). Some comments on the long sea level records from the northern Mediterranean. Journal of Coastal Research, 19, 212–217.

    Google Scholar 

  314. Woodworth, P. L., Aman, A., & Aarup, T. (2007). Sea level monitoring in Africa. African Journal of Marine Science, 29, 321–330.

    Article  Google Scholar 

  315. Woodworth, P. L., Gravelle, M., Marcos, M., Wöppelmann, G., & Hughes, C. W. (2015). The status of measurement of the Mediterranean mean dynamic topography by geodetic techniques. Journal of Geodesy, 89, 811–827.

    Article  Google Scholar 

  316. Wöppelmann, G., & Marcos, M. (2012). Coastal sea level rise in southern Europe and the nonclimate contribution of vertical land motion. Journal of Geophysical Research, 117, C01007. doi:10.1029/2011JC007469.

    Article  Google Scholar 

  317. Wöppelmann, G., Martin Miguez, B., Bouin, M.-N., & Altamimi, Z. (2007). Geocentric sea-level trend estimates from GPS analyses at relevant tide gauges world-wide. Global and Planetary Change, 57, 396–406.

    Article  Google Scholar 

  318. Zampato, L., Bajo, M., Canestrelli, P., & Umgiesser, G. (2016). Storm surge modelling in Venice: two years of operational results. Journal of Operational Oceanography, 9, S46–S57.

    Article  Google Scholar 

  319. Zampato, L., Umgiesser, G., & Zecchetto, S. (2006). Storm surge in the Adriatic Sea: observational and numerical diagnosis of an extreme event. Advances in Geosciences, 7, 371–378.

    Article  Google Scholar 

  320. Zampato, L., Umgiesser, G., & Zecchetto, S. (2007). Sea level forecasting in Venice through high resolution meteorological fields. Estuarine, Coastal and Shelf Science, 75, 223–235.

    Article  Google Scholar 

  321. Zanchettin, D., Traverso, P., & Tomasino, M. (2006). Discussion on sea level fluctuations along the Adriatic coasts coupling to climate indices forced by solar activity: Insights into the future of Venice. Global and Planetary Change, 50, 226–234.

    Article  Google Scholar 

  322. Zecchetto, S., Umgiesser, G., & Brocchini, M. (1997). Hindcast of a storm surge induced by local real wind fields in the Venice Lagoon. Continental Shelf Research, 17, 1513–1538.

    Article  Google Scholar 

  323. Zecchin, M., Gordini, E., & Ramella, R. (2015). Recognition of a drowned delta in the northern Adriatic Sea, Italy: Stratigraphic characteristics and its significance in the frame of the early Holocene sea-level rise. The Holocene, 25, 1027–1038.

    Article  Google Scholar 

  324. Zerbini, S., Bruni, S., Errico, M., & Santi, E. (2015). Space geodetic activities, from the early days to present, with focus on the northeastern Adriatic. Rendiconti, Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, 26(Suppl. 1), S43–S51.

    Article  Google Scholar 

  325. Zhang, K. Q., Douglas, B. C., & Leatherman, S. P. (2000). Twentieth-century storm activity along the US east coast. Journal of Climate, 13, 1748–1761.

    Article  Google Scholar 

  326. Zore, M. (1960). Variations of the sea level along the eastern Adriatic coast and the system of gradient currents in the Adriatic (in Croatian). Hidrografski godišnjak, 1959, 59–65.

    Google Scholar 

  327. Zore-Armanda, M. (1979). Destructive wave in the Adriatic. Rapport et Procès verbaux des Réunions du Conseil International pour l’Exploration Scientifique de la Mer Méditerranée, 25–26, 93–94.

    Google Scholar 

Download references

Acknowledgements

This work has been supported by the Croatian Science Foundation through Projects 2831 (CARE) and UKF 25/15 (MESSI).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ivica Vilibić.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vilibić, I., Šepić, J., Pasarić, M. et al. The Adriatic Sea: A Long-Standing Laboratory for Sea Level Studies. Pure Appl. Geophys. 174, 3765–3811 (2017). https://doi.org/10.1007/s00024-017-1625-8

Download citation

Keywords

  • Adriatic Sea
  • sea level
  • various temporal and spatial scales
  • operational systems
  • open research issues