Skip to main content
Log in

Simulation of Near-Fault High-Frequency Ground Motions from the Representation Theorem

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

“What is the maximum possible ground motion near an earthquake fault?” is an outstanding question of practical significance in earthquake seismology. In establishing a possible theoretical cap on extreme ground motions, the representation integral of elasticity, providing an exact, within limits of applicability, solution for fault radiation at any frequency, is an under-utilized tool. The application of a numerical procedure leading to synthetic ground displacement, velocity, and acceleration time histories to modeling of the record at the Lucerne Valley hard-rock station, uniquely located at 1.1 km from the rupture of the M w 7.2 Landers, California event, using a seismologically constrained temporal form of slip on the fault, reveals that the shape of the displacement waveform can be modeled closely, given the simplicity of the theoretical model. High precision in the double integration, as well as carefully designed smoothing and filtering, are necessary to suppress the numerical noise in the high-frequency (velocity and acceleration) synthetic motions. The precision of the integration of at least eight decimal digits ensures the numerical error in the displacement waveforms generally much lower than 0.005% and reduces the error in the peak velocities and accelerations to the levels acceptable to make the representation theorem a reliable tool in the practical evaluation of the magnitude of maximum possible ground motions in a wide-frequency range of engineering interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

After Wald and Heaton (1994)

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aki, K. (1967). Scaling law of seismic spectrum. Journal of Geophysical Research, 72, 1217–1231.

    Article  Google Scholar 

  • Aki, K., & Richards, P. G. (1980). Quantitative Seismology. San Francisco: W. H. Freeman and Company.

    Google Scholar 

  • Anderson, J. G., & Richards, P. G. (1975). Comparison of strong ground motion from several dislocation models. Geophysical Journal of the Royal Astronomical Society, 42, 347–373.

    Article  Google Scholar 

  • Andrews, D. J., Hanks, T. C., & Whitney, J. W. (2007). Physical limits on ground motion at Yucca Mountain. Bulletin of the Seismological Society of America, 87, 1771–1792.

    Article  Google Scholar 

  • Anil-Bayrak, N. A., & Beresnev, I. A. (2009). Fault slip velocities inferred from the spectra of ground motions. Bulletin of the Seismological Society of America, 99, 876–883.

    Article  Google Scholar 

  • Båth, M. (1974). Spectral analysis in geophysics. Amsterdam: Elsevier.

    Google Scholar 

  • Beresnev, I. A. (2001). What we can and cannot learn about earthquake sources from the spectra of seismic waves. Bulletin of the Seismological Society of America, 91, 397–400.

    Article  Google Scholar 

  • Beresnev, I. A. (2003). Uncertainties in finite-fault slip inversions: To what extent to believe? (A critical review). Bulletin of the Seismological Society of America, 93, 2445–2458.

    Article  Google Scholar 

  • Beresnev, I. (2013). Reflections on frequency dependence in earthquake-source inversions. Natural Hazards, 66, 1287–1291.

    Article  Google Scholar 

  • Beresnev, I. A. (2017). Factors controlling high-frequency radiation from extended ruptures. Journal of Seismology. doi:10.1007/s10950-017-9660-6. (in press, published online April 5, 2017).

    Google Scholar 

  • Beresnev, I. A., & Atkinson, G. M. (1997). Modeling finite-fault radiation from the ω n spectrum. Bulletin of the Seismological Society of America, 93, 67–84.

    Google Scholar 

  • Beresnev, I. A., & Atkinson, G. M. (1998). Stochastic finite-fault modeling of ground motions from the 1994 Northridge, California, earthquake. I. Validation on rock sites. Bulletin of the Seismological Society of America, 88, 1392–1401.

    Google Scholar 

  • Beresnev, I. A., & Atkinson, G. M. (2002). Source parameters of earthquakes in eastern and western North America based on finite-fault modeling. Bulletin of the Seismological Society of America, 92, 695–710.

    Article  Google Scholar 

  • Beresnev, I. A., & Wen, K.-L. (1996). Nonlinear soil response—a reality? Bulletin of the Seismological Society of America, 86, 1964–1978.

    Google Scholar 

  • Boore, D. M. (1983). Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra. Bulletin of the Seismological Society of America, 73, 1865–1894.

    Google Scholar 

  • Brune, J. N. (1970). Tectonic stress and the spectra of seismic shear waves from earthquakes. Journal of Geophysical Research, 75, 4997–5009.

    Article  Google Scholar 

  • Field, E. H., Johnson, P. A., Beresnev, I. A., & Zeng, Y. (1997). Nonlinear ground-motion amplification by sediments during the 1994 Northridge earthquake. Nature, 390, 599–602.

    Article  Google Scholar 

  • Harris, J. W., & Stocker, H. (1998). Handbook of mathematics and computational science. Berlin: Springer.

    Book  Google Scholar 

  • Haskell, N. A. (1969). Elastic displacements in the near-field of a propagating fault. Bulletin of the Seismological Society of America, 59, 865–908.

    Google Scholar 

  • McGarr, A., & Fletcher, J. B. (2007). Near-fault peak ground velocity from earthquake and laboratory data. Bulletin of the Seismological Society of America, 97, 1502–1510.

    Article  Google Scholar 

  • Ohnaka, M. (1973). A physical understanding of the earthquake source mechanism. Journal of Physics of the Earth, 21, 39–59.

    Article  Google Scholar 

  • Olson, A. H., & Apsel, R. J. (1982). Finite faults and inverse theory with applications to the 1979 Imperial Valley earthquake. Bulletin of the Seismological Society of America, 72, 1969–2001.

    Google Scholar 

  • Ripperger, J., Mai, P. M., & Ampuero, J.-P. (2008). Variability of near-field ground motion from dynamic earthquake rupture simulations. Bulletin of the Seismological Society of America, 98, 1207–1228.

    Article  Google Scholar 

  • Schmedes, J., & Archuleta, R. J. (2008). Near-source ground motion along strike-slip faults: Insights into magnitude saturation of PGV and PGA. Bulletin of the Seismological Society of America, 98, 2278–2290.

    Article  Google Scholar 

  • Sheriff, R. E., & Geldart, L. P. (1995). Exploration seismology (2nd ed.). Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Strasser, F. O., & Bommer, J. J. (2009). Strong ground motions—have we seen the worst? Bulletin of the Seismological Society of America, 99, 2613–2637.

    Article  Google Scholar 

  • Wald, D. J., & Heaton, T. H. (1994). Spatial and temporal distribution of slip for the 1992 Landers, California, earthquake. Bulletin of the Seismological Society of America, 84, 668–691.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor A. Beresnev.

Appendix

Appendix

We need to show that the convolution integral

$$\mathop \int \limits_{R/\alpha }^{R/\beta } t^{'} \Delta u({\varvec{\upxi}},t - t^{'} ){\text{d}}t^{'} ,$$
(A1)

used in the first term of the integrand in Eq. (1) is the same as the function

$$\begin{aligned}&\left[ {F\left( {t - \frac{R}{\alpha }} \right) - F\left( {t - \frac{R}{\beta }} \right) + \frac{R}{\alpha }\dot{F}\left( {t - \frac{R}{\alpha }} \right) - \frac{R}{\beta }\dot{F}\left( {t - \frac{R}{\beta }} \right)} \right],\, \\ & \quad {\rm where}\, F\left( t \right) = \mathop \int \limits_{0}^{t} {\text{d}}t'\mathop \int \limits_{0}^{{t^{'} }} \Delta u\left( {{\varvec{\upxi}},t''} \right){\text{d}}t'', \end{aligned}$$
(A2)

appearing instead in the original Eq. (14.37) of Aki and Richards (1980).

We start with the convolution (A1) and switch to a new integration variable \(t^{''} = t - t'\), transforming (A1) to

$$\mathop \int \limits_{t - R/\beta }^{t - R/\alpha } (t - t^{''} )\Delta u({\varvec{\upxi}},t^{''} ){\text{d}}t^{''} .$$
(A3)

With the use of Barrow’s theorem, \(\frac{\text{d}}{{{\text{d}}x}}\mathop \int \limits_{a}^{x} f\left( t \right){\text{d}}t = f(x)\) (e.g., Harris and Stocker 1998, p. 552), (A3) is re-written as

$$\mathop \int \limits_{{t - \frac{R}{\beta }}}^{{t - \frac{R}{\alpha }}} \left( {t - t^{''} } \right)\left[ {\frac{\text{d}}{{{\text{d}}t^{''} }}\mathop \int \limits_{0}^{{t^{''} }} \Delta u\left( {{\varvec{\upxi}},t} \right){\text{d}}t} \right]{\text{d}}t^{''} = \mathop \int \limits_{{t - \frac{R}{\beta }}}^{{t - \frac{R}{\alpha }}} (t - t^{'} )\left[ {\frac{\text{d}}{{{\text{d}}t^{'} }}\mathop \int \limits_{0}^{{t^{'} }} \Delta u\left( {{\varvec{\upxi}},t^{''} } \right){\text{d}}t^{''} } \right]{\text{d}}t^{'} ,$$
(A4)

where we renamed the variables of integration in the right-hand side. Integrating (A4) by parts, noting that \({\text{d}}t/{\text{d}}t^{\prime } = 0\), and observing that several terms cancel, we transform the right-hand side of (A4) to

$$\frac{R}{\alpha }\mathop \int \limits_{0}^{t - R/\alpha } \Delta u\left( {{\varvec{\upxi}},t^{''} } \right){\text{d}}t^{''} - \frac{R}{\beta }\mathop \int \limits_{0}^{t - R/\beta } \Delta u\left( {{\varvec{\upxi}},t^{''} } \right){\text{d}}t^{''} + \mathop \int \limits_{{t - \frac{R}{\beta }}}^{{t - \frac{R}{\alpha }}} {\text{d}}t'\mathop \int \limits_{0}^{{t^{'} }} \Delta u\left( {{\varvec{\upxi}},t^{''} } \right){\text{d}}t^{''} .$$
(A5)

Equation (A5) can be re-cast as

$$\begin{aligned} \frac{R}{\alpha }\mathop \int \limits_{0}^{t - R/\alpha } \Delta u({\varvec{\upxi}},t^{''} ){\text{d}}t^{''} - \frac{R}{\beta }\mathop \int \limits_{0}^{t - R/\beta } \Delta u({\varvec{\upxi}},t^{''} ){\text{d}}t^{''} + \mathop \int \limits_{0}^{{t - \frac{R}{\alpha }}} {\text{d}}t^{'} \mathop \int \limits_{0}^{{t^{'} }} \Delta u({\varvec{\upxi}},t^{''} ){\text{d}}t^{''} \hfill \\ - \mathop \int \limits_{0}^{{t - \frac{R}{\beta }}} {\text{d}}t^{'} \mathop \int \limits_{0}^{{t^{'} }} \Delta u({\varvec{\upxi}},t^{''} ){\text{d}}t^{''} . \hfill \\ \end{aligned}$$
(A6)

If we now introduce the function \(F(t)\) as in (A2) and note that, by Barrow’s theorem,

$$\dot{F}\left( t \right) = \frac{\text{d}}{{{\text{d}}t}}\mathop \int \limits_{0}^{t} {\text{d}}t^{\prime } \mathop \int \limits_{0}^{{t^{'} }} \Delta u\left( {{\varvec{\upxi}},t^{\prime \prime } } \right){\text{d}}t^{\prime \prime } = \mathop \int \limits_{0}^{t} \Delta u\left( {{\varvec{\upxi}},t^{\prime \prime } } \right){\text{d}}t^{\prime \prime } ,$$

(A6) becomes

$$\frac{R}{\alpha }\dot{F}\left( {t - \frac{R}{\alpha }} \right) - \frac{R}{\beta }\dot{F}\left( {t - \frac{R}{\beta }} \right) + F\left( {t - \frac{R}{\alpha }} \right) - F\left( {t - \frac{R}{\beta }} \right),$$
(A7)

which is the desired equation (A2).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beresnev, I.A. Simulation of Near-Fault High-Frequency Ground Motions from the Representation Theorem. Pure Appl. Geophys. 174, 4021–4034 (2017). https://doi.org/10.1007/s00024-017-1623-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-017-1623-x

Keywords

Navigation