Advertisement

Pure and Applied Geophysics

, Volume 174, Issue 7, pp 2773–2792 | Cite as

Toward Improved Solar Irradiance Forecasts: Comparison of the Global Horizontal Irradiances Derived from the COMS Satellite Imagery Over the Korean Peninsula

  • Chang Ki KimEmail author
  • Hyun-Goo Kim
  • Yong-Heack Kang
  • Chang-Yeol Yun
Article

Abstract

This study introduces the University of Arizona Solar Irradiance Based on Satellite/Korea Institute of Energy Research, which is usually called UASIBS/KIER model. Then the evaluation of modeling performance is done against the ground observations for the instantaneous, hourly, and daily time scales over the Korean Peninsula in this study. The relative root mean square error for the instantaneous time scale is 7.4 and 16.7% for the clear and cloudy skies, respectively. The hourly mean estimates are compared with the in situ measurements from 35 ground observation stations, resulting in a relative root mean square error ranging from 9.1 to 15.5%. The daily aggregates are proven as the most reliable estimates. The UASIBS/KIER estimates are also compared with the routine solar insolation product from the Korea Meteorological Administration. Finally, the solar energy resource map has been built by the daily solar irradiance derived from the UASIBS/KIER model, followed by its comparison with the other gridded datasets.

Keywords

COMS satellite-derived global horizontal irradiance solar irradiance forecasting solar energy resource assessment 

Notes

Acknowledgements

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry and Energy (MOTIE) of the Republic of Korea (No. 20143010071570).

References

  1. Almeida, M. P., Zilles, R., & Lorenzo, E. (2014). Extreme overirradiance events in São Paulo, Brazil. Solar Energy, 110, 168–173.CrossRefGoogle Scholar
  2. Baek, J., Byun, K., Kim, D., & Choi, M. (2013). Assessment of solar insolation from COMS: Sulma and Cheongmi watersheds. Korean Journal of Remote Sensing, 29, 137–149. (In Korean with English Abstract).CrossRefGoogle Scholar
  3. Bendix, J., Thies, B., Nauß, T., & Cermak, J. (2006). A feasibility study of daytime fog and low stratus detection with TERRA/AQUA-MODIS over land. Meteorological Applications, 13, 111–125.CrossRefGoogle Scholar
  4. Cho, Y. K., Kim, M. O., & Kim, B. C. (2000). Sea fog around the Korean peninsula. Journal of Applied Meteorology, 39, 2473–2479.CrossRefGoogle Scholar
  5. Choi, S. Won, Song, R Ah, & Kim Yong, I. (2015). Solar irradiance estimation in Korea by using modified Heliosat-II method and COMS-MI imagery. Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 33, 463–472. (In Korean with English Abstract).CrossRefGoogle Scholar
  6. Chou, M.-D., & Suarez, M. J. (1999). A solar radiation parameterization for atmospheric studies. NASA/TM, 104606, 65.Google Scholar
  7. Chow, C. W., Urquhart, B., Lave, M., Dominguez, A., Kleissl, J., Shields, J., et al. (2011). Intra-hour forecasting with a total sky imager at the UC San Diego solar energy testbed. Solar Energy, 85, 2881–2893.CrossRefGoogle Scholar
  8. Cotton, W. R., Bryan, G. H., van den Heever S. C. (2011) Storm and cloud dynamics: The dynamics of clouds and precipitating mesoscale systems. (pp 820). Burlington, MA:Academic PressGoogle Scholar
  9. CREC. (2013). California renewable energy forecasting, resource data and mapping. Final Report BOA-99-248-R.Google Scholar
  10. Dedieu, G., Deschamps, P. Y., & Kerr, Y. H. (1987). Satellite estimation of solar irradiance at the surface of the Earth and of surface albedo using a physical model applied to Metcosat data. Journal of Climate and Applied Meteorology, 26, 79–87.CrossRefGoogle Scholar
  11. Fu, Q. (1996). An accurate parameterization of the solar radiative properties of cirrus clouds for climate models. Journal of Climate, 9, 2058–2082.CrossRefGoogle Scholar
  12. Fu, Q., & Liou, K. N. (1993). Parameterization of the radiative properties of cirrus clouds. Journal of Atmospheric Science, 50, 2008–2025.CrossRefGoogle Scholar
  13. Gautier, C., Diak, G., & Masse, S. (1980). A simple physical model to estimate incident solar radiation at the surface from GOES satellite data. Journal of Applied Meteorology, 19, 1005–1012.CrossRefGoogle Scholar
  14. Geiger, B., Meurey, C., Lajas, D., Franchistéguy, L., Carrer, D., & Roujean, J.-L. (2008). Near real-time provision of downwelling shortwave radiation estimates derived from satellite observations. Meteorological Applications, 15, 411–420.CrossRefGoogle Scholar
  15. Ghan, S., Wang, M., Zhang, S., Ferrachat, S., Gettelman, A., Griesfeller, J., et al. (2016). Challenges in constraining anthropogenic aerosol effects on cloud radiative forcing using present-day spatiotemporal variability. Proceedings of the National Academy of Sciences, 113, 5804–5811.CrossRefGoogle Scholar
  16. Gilgen, H., Wild, M., & Ohmura, A. (1998). Means and trends of shortwave irradiance at the surface estimated from global energy balance archive data. Journal of Climate, 11, 2042–2061.CrossRefGoogle Scholar
  17. Gultepe, I., Pagowski, M., & Reid, J. (2007). A satellite-based fog detection scheme using screen air temperature. Weather and Forecasting, 22, 444–456.CrossRefGoogle Scholar
  18. Gupta, S. K., Ritchey, N. A., Wilber, A. C., Whitlock, C. H., Gibson, G. G., & Stackhouse, P. W. (1999). A climatology of surface radiation budget derived from satellite data. Journal of Climate, 12, 2691–2710.CrossRefGoogle Scholar
  19. Hong, G., & Minnis, P. (2015). Effects of spherical inclusions on scattering properties of small ice cloud particles. Journal of Geophysical Research, 120, 2951–2969.Google Scholar
  20. Ineichen, P., Barroso, C. S., Geiger, B., Hollmann, R., Marsouin, A., & Mueller, R. (2009). Satellite application facilities irradiance products: hourly time step comparison and validation over Europe. International Journal of Remote Sensing, 30, 5549–5571.CrossRefGoogle Scholar
  21. IPCC. (2013). Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press.Google Scholar
  22. Jee, J.-B., Zo, I.-S., & Lee, K.-T. (2013). A study on the retrievals of downward solar radiation at the surface based on the observations from multiple geostationary satellites. Korean Journal of Remote Sensing, 29, 123–135. (In Korean with English Abstract).CrossRefGoogle Scholar
  23. Kawamura, H., Tanahashi, S., & Takahashi, T. (1998). Estimation of insolation over the Pacific Ocean off the Sanriku coast. Journal of Oceanography, 54, 457–464.CrossRefGoogle Scholar
  24. Kim, C. K., Holmgren, W. F., Stovern, M., & Betterton, E. A. (2016a). Toward improved solar irradiance forecasts: derivation of downwelling surface shortwave radiation in Arizona from satellite. Pure and Applied Geophysics, 173, 2535–2553.CrossRefGoogle Scholar
  25. Kim, C. K., Holmgren, W. F., Stovern, M., & Betterton, E. A. (2016b). Toward improved solar irradiance forecasts: comparison of downwelling surface shortwave radiation in Arizona derived from satellite with the gridded datasets. Pure and Applied Geophysics, 173, 2929–2943.CrossRefGoogle Scholar
  26. Kim, C. K., Kim, H.-G., Kang, Y.-H., Yun, C.-Y., & Lee, S.-N. (2016c). Evaluation of global horizontal irradiance derived from CLAVR-x model and COMS imagery over the Korean Peninsula. New and Renewable Energy, 12, 13–20.CrossRefGoogle Scholar
  27. Kim, C. K., Stuefer, M., Schmitt, C. G., Heymsfield, A., & Thompson, G. (2014). Numerical modeling of ice fog in interior Alaska using the weather research and forecasting model. Pure and Applied Geophysics, 171, 1963–1982.CrossRefGoogle Scholar
  28. Kim, C. K., & Yum, S. S. (2010). Local meteorological and synoptic characteristics of fogs formed over Incheon international airport in the west coast of Korea. Advances in Atmospheric Sciences, 27, 761–776.CrossRefGoogle Scholar
  29. Kleissl, J. P. (2013). Solar energy forecasting and resource assessment (1st ed.). Cambridge: Academic Press.Google Scholar
  30. Lacis, A. A., & Hansen, J. (1974). A Parameterization for the absorption of solar radiation in the Earth’s atmosphere. Journal of Atmospheric Science, 31, 118–133.CrossRefGoogle Scholar
  31. Lee, J., Choi, W., Kim, Y., Yun, C., Jo, D., & Kang, Y. (2013). Estimation of global horizontal insolation over the Korean Peninsula based on COMS MI satellite images. Korean Journal of Remote Sensing, 29, 151–160. (In Korean with English Abstract).CrossRefGoogle Scholar
  32. Li, Z., & Leighton, H. G. (1993). Global climatologies of solar radiation budgets at the surface and in the atmosphere from 5 years of ERBE data. Journal of Geophysical Research: Atmospheres, 98, 4919–4930.CrossRefGoogle Scholar
  33. Liou, K. N. (2002). An introduction to atmospheric radiation (2nd ed.). Cambridge: Academic Press.Google Scholar
  34. Lorenzo, A. T., Holmgren, W. F., & Cronin, A. D. (2015). Irradiance forecasts based on an irradiance monitoring network, cloud motion, and spatial averaging. Solar Energy, 122, 1158–1169.CrossRefGoogle Scholar
  35. Ma, Y., & Pinker, R. T. (2012). Modeling shortwave radiative fluxes from satellites. Journal of Geophysical Research: Atmospheres, 117, D23202. (1–19).Google Scholar
  36. Manara, V., Brunetti, M., Celozzi, A., Maugeri, M., Sanchez-Lorenzo, A., & Wild, M. (2016). Detection of dimming/brightening in Italy from homogenized all-sky and clear-sky surface solar radiation records and underlying causes (1959–2013). Atmospheric Chemistry and Physics, 16, 11145–11161.CrossRefGoogle Scholar
  37. Mathiesen, P., Collier, C., & Kleissl, J. (2013). A high-resolution, cloud-assimilating numerical weather prediction model for solar irradiance forecasting. Solar Energy, 92, 47–61.CrossRefGoogle Scholar
  38. Mathiesen, P., & Kleissl, J. (2011). Evaluation of numerical weather prediction for intra-day solar forecasting in the continental United States. Solar Energy, 85, 967–977.CrossRefGoogle Scholar
  39. Moser, W., & Raschke, E. (1984). Incident solar radiation over Europe estimated from METEOSAT data. Journal of Climate and Applied Meteorology, 23, 166–170.CrossRefGoogle Scholar
  40. Nogherotto, R., Tompkins, A. M., Giuliani, G., Coppola, E., & Giorgi, F. (2016). Numerical framework and performance of the new multiple-phase cloud microphysics scheme in RegCM4.5: precipitation, cloud microphysics, and cloud radiative effects. Geoscientific Model Development, 9, 2533–2547.CrossRefGoogle Scholar
  41. NREL. (2012). U.S. Department of Energy Workshop Report: Solar Resources and Forecasting Technical Report NREL/TP-5500-55432Google Scholar
  42. Piedehierro, A. A., Antón, M., Cazorla, A., Alados-Arboledas, L., & Olmo, F. J. (2014). Evaluation of enhancement events of total solar irradiance during cloudy conditions at Granada (Southeastern Spain). Atmospheric Research, 135–136, 1–7.CrossRefGoogle Scholar
  43. Pinker, R. T., & Ewing, J. A. (1985). Modeling surface solar radiation: model formulation and validation. Journal of Climate and Applied Meteorology, 24, 389–401.CrossRefGoogle Scholar
  44. Pinker, R. T., & Laszlo, I. (1992). Modeling surface solar irradiance for satellite applications on a global scale. Journal of Applied Meteorology, 31, 194–211.CrossRefGoogle Scholar
  45. Pinker, R. T., Tarpley, J. D., Laszlo, I., Mitchell, K. E., Houser, P. R., Wood, E. F., et al. (2003). Surface radiation budgets in support of the GEWEX Continental-Scale International Project (GCIP) and the GEWEX Americas Prediction Project (GAPP), including the North American Land Data Assimilation System (NLDAS) project. Journal of Geophysical Research, 108, 8844. doi: 10.1029/2002JD003301.CrossRefGoogle Scholar
  46. Pruppacher, H., & Klett, J. (1997). Microphysics of cloud and precipitation. Dordrecht: Kluwer Academic.Google Scholar
  47. Rabin, R. M., & Martin, D. W. (1996). Satellite observations of shallow cumulus coverage over the central United States: an exploration of land use impact on cloud cover. Journal of Geophysical Research, 101, 7149–7155.CrossRefGoogle Scholar
  48. Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., et al. (2011). MERRA: NASA’s modern-era retrospective analysis for research and applications. Journal of Climate, 24, 3624–3648.CrossRefGoogle Scholar
  49. Rigollier, C., Lefèvre, M., & Wald, L. (2004). The method Heliosat-2 for deriving shortwave solar radiation from satellite images. Solar Energy, 77, 159–169.CrossRefGoogle Scholar
  50. Rossow, W. B., & Schiffer, R. A. (1991). ISCCP cloud data products. Bulletin of the American Meteorological Society, 72, 2–20.CrossRefGoogle Scholar
  51. Rossow, W. B. & R. A. Schiffer. (1999). Advances in understanding clouds from ISCCP. Bulletin of the American Meteorological Society, 80, 2261–2287.CrossRefGoogle Scholar
  52. Ruiz-Arias, J. A., Dudhia, J., Santos-Alamillos, F. J., & Pozo-Vázquez, D. (2013). Surface clear-sky shortwave radiative closure intercomparisons in the Weather Research and Forecasting model. Journal of Geophysical Research, 118, 9901–9913.Google Scholar
  53. Schillings, C., Mannstein, H., & Meyer, R. (2004). Operational method for deriving high resolution direct normal irradiance from satellite data. Solar Energy, 76, 475–484.CrossRefGoogle Scholar
  54. Stanhill, G., & Cohen, S. (2005). Solar radiation changes in the united states during the twentieth century: evidence from sunshine duration measurements. Journal of Climate, 18, 1503–1512.CrossRefGoogle Scholar
  55. Streets, D. G., Wu, Y., & Chin, M. (2006). Two-decadal aerosol trends as a likely explanation of the global dimming/brightening transition. Geophysical Research Letters, 33, L15806. doi: 10.1029/2006GL026471.CrossRefGoogle Scholar
  56. Stuhlmann, R., Rieland, M., & Paschke, E. (1990). An improvement of the IGMK model to derive total and diffuse solar radiation at the surface from satellite data. Journal of Applied Meteorology, 29, 586–603.CrossRefGoogle Scholar
  57. Tanaka, K., Ohmura, A., Folini, D., Wild, M., & Ohkawara, N. (2016). Is global dimming and brightening in Japan limited to urban areas? Atmospheric Chemistry and Physics, 16, 13969–14001.CrossRefGoogle Scholar
  58. Thompson, G., Tewari, M., Ikeda, K., Tessendorf, S., Weeks, C., Otkin, J., et al. (2016). Explicitly-coupled cloud physics and radiation parameterizations and subsequent evaluation in WRF high-resolution convective forecasts. Atmospheric Research, 168, 92–104.CrossRefGoogle Scholar
  59. Tilmes, S., Lamarque, J. F., Emmons, L. K., Conley, A., Schultz, M. G., Saunois, M., et al. (2012). Technical note: ozonesonde climatology between 1995 and 2011: description, evaluation and applications. Atmospheric Chemistry and Physics, 12, 7475–7497.CrossRefGoogle Scholar
  60. Twomey, S. (1977). The influence of pollution on the shortwave albedo of clouds. Journal of Atmospheric Science, 34, 1149–1152.CrossRefGoogle Scholar
  61. Vignola, F., Harlan, P., Perez, R., & Kmiecik, M. (2007). Analysis of satellite derived beam and global solar radiation data. Solar Energy, 81, 768–772.CrossRefGoogle Scholar
  62. Wang, H., & Pinker, R. T. (2009). Shortwave radiative fluxes from MODIS: model development and implementation. Journal of Geophysical Research, 114, D20201. doi: 10.1029/2008JD010442.CrossRefGoogle Scholar
  63. Wegertseder, P., Lund, P., Mikkola, J., & Alvarado, R. G. (2016). Combining solar resource mapping and energy system integration methods for realistic valuation of urban solar energy potential. Solar Energy, 135, 325–336.CrossRefGoogle Scholar
  64. Whitlock, C. H., Charlock, T. P., Staylor, W. F., Pinker, R. T., Laszlo, I., Ohmura, A., et al. (1995). First global WCRP shortwave surface radiation budget dataset. Bulletin of the American Meteorological Society, 76, 905–922.CrossRefGoogle Scholar
  65. Wielicki, B. A., Harrison, E. F., Cess, R. D., King, M. D., & Randall, D. A. (1995). Mission to planet Earth: role of clouds and radiation in climate. Bulletin of the American Meteorological Society, 76, 2125–2153.CrossRefGoogle Scholar
  66. Wild, M., Gilgen, H., Roesch, A., Ohmura, A., Long, C. N., Dutton, E. G., et al. (2005). From dimming to brightening: decadal changes in solar radiation at Earth’s surface. Science, 308, 847–850.CrossRefGoogle Scholar
  67. Yang, P., Liou, K. N., Wyser, K., & Mitchell, D. (2000). Parameterization of the scattering and absorption properties of individual ice crystals. Journal of Geophysical Research, 105, 4699–4718.CrossRefGoogle Scholar
  68. Yeom, J.-M., Han, K.-S., Lee, C.-S., & Kim, D.-Y. (2008). An improved validation technique for the temporal discrepancy when estimated solar surface insolation compare with ground-based pyranometer: MTSAT-1R data use. Korean Journal of Remote Sensing, 24, 605–612. (In Korean with English Abstract).Google Scholar
  69. Yi, B., Yang, P., Liu, Q., van Delst, P., Boukabara, S.-A., & Weng, F. (2016). Improvements on the ice cloud modeling capabilities of the Community Radiative Transfer Model. Journal of Geophysical Research, 121, 2016JD025207. doi: 10.1002/2016jd025207.Google Scholar
  70. Yordanov, G. H., Midtgard, O. M., Saetre, T. O., Nielsen, H. K., & Norum, L. E. (2013). Overirradiance (cloud enhancement) events at high latitudes. IEEE Journal of Photovoltaics, 3, 271–277.CrossRefGoogle Scholar
  71. Zelenka, A., Perez, R., Seals, R., & Renné, D. (1999). Effective accuracy of satellite-derived hourly irradiances. Theoretical and applied climatology, 62, 199–207.CrossRefGoogle Scholar
  72. Zhang, Y. C., Rossow, W. B., & Lacis, A. A. (1995). Calculation of surface and top of atmosphere radiative fluxes from physical quantities based on ISCCP data sets: 1. Method and sensitivity to input data uncertainties. Journal of Geophysical Research, 100, 1149–1165.CrossRefGoogle Scholar
  73. Zhang, Y., Rossow, W. B., Lacis, A. A., Oinas, V., & Mishchenko, M. I. (2004). Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: refinements of the radiative transfer model and the input data. Journal of Geophysical Research, 109, D19105. doi: 10.1029/2003JD004457.CrossRefGoogle Scholar
  74. Zo, I.-S., Jee, J.-B., & Lee, K.-T. (2014). Development of GWNU (Gangneung-Wonju National University) one-layer transfer model for calculation of solar radiation distribution of the Korean peninsula. Asia-Pacific Journal of Atmospheric Sciences, 50, 575–584.CrossRefGoogle Scholar
  75. Zo, I.-S., Jee, J.-B., Lee, K.-T., & Kim, B.-Y. (2016). Analysis of solar radiation on the surface estimated from GWNU solar radiation model with temporal resolution of satellite cloud fraction. Asia-Pacific Journal of Atmospheric Sciences, 52, 405–412.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing 2017

Authors and Affiliations

  • Chang Ki Kim
    • 1
    Email author
  • Hyun-Goo Kim
    • 1
  • Yong-Heack Kang
    • 1
  • Chang-Yeol Yun
    • 1
  1. 1.New and Renewable Energy Resource CenterKorea Institute of Energy ResearchDaejeonKorea

Personalised recommendations