Skip to main content

Influence of Tidal Forces on the Triggering of Seismic Events

Abstract

Tidal stresses are generated in any three-dimensional body influenced by an external inhomogeneous gravity field of rotating planets or moons. In this paper, as a special case, stresses caused within the solid Earth by the body tides are discussed from viewpoint of their influence on seismic activity. The earthquake triggering effects of the Moon and Sun are usually investigated by statistical comparison of tidal variations and temporal distribution of earthquake activity, or with the use of mathematical or experimental modelling of physical processes in earthquake prone structures. In this study, the magnitude of the lunisolar stress tensor in terms of its components along the latitude of the spherical surface of the Earth as well as inside the Earth (up to the core-mantle boundary) were calculated for the PREM (Dziewonski and Anderson in Phys Earth Planet Inter 25(4):297–356, 1981). Results of calculations prove that stress increases as a function of depth reaching a value around some kPa at the depth of 900–1500 km, well below the zone of deep earthquakes. At the depth of the overwhelming part of seismic energy accumulation (around 50 km) the stresses of lunisolar origin are only (0.0–1.0)·103 Pa. Despite the fact that these values are much smaller than the earthquake stress drops (1–30 MPa) (Kanamori in Annu Rev Earth Planet Sci 22:207–237, 1994) this does not exclude the possibility of an impact of tidal forces on outbreak of seismic events. Since the tidal potential and its derivatives are coordinate dependent and the zonal, tesseral and sectorial tides have different distributions from the surface down to the CMB, the lunisolar stress cannot influence the break-out of every seismological event in the same degree. The influencing lunisolar effect of the solid earth tides on earthquake occurrences is connected first of all with stress components acting parallel to the surface of the Earth. The influence of load tides is limited to the loaded area and its immediate vicinity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Alterman, Z., Jarosch, H., & Pekeris, C. L. (1959). Oscillations of the Earth. Proceedings of the Royal Society London A, 252, 80–95.

    Article  Google Scholar 

  • Arabelos, D. N., Contadakis, M. E., Vergos, G., & Spatalas, S. (2016). Variation of the Earth tide-seismicity compliance parameter during the recent seismic activity in Fthiotida, central Greece. Annals of Geophysics, 59(1), 102. doi:10.4401/ag-6795.

    Google Scholar 

  • Chen, H.-J., Chen, C.-Y., Tseng, J.-H., & Wang, J.-H. (2012a). Effect of tidal triggering on seismicity in Taiwan revealed by the empirical mode decomposition method. Natural Hazards and Earth System Sciences, 12, 2193–2202.

    Article  Google Scholar 

  • Chen, L., Chen, J. G., & Xu, Q. H. (2012b). Correlation between solid tides and worldwide earthquakes M ≥ 7 since 1900. Natural Hazards and Earth System Sciences, 12, 587–590.

    Article  Google Scholar 

  • Cochran, E. S., Vidale, J. E., & Tanaka, S. (2004). Earth tide can trigger shallow thrust fault earthquakes. Science, 306, 1164–1166.

    Article  Google Scholar 

  • Cotton, L. A. (1922). Earthquake frequency with special reference to tidal stresses in the lithosphere. Bulletin of the Seismological Society of America, 12, 47–198.

    Google Scholar 

  • Davison, C. (1927). Founders of seismology. Cambridge: Cambridge University Press.

    Google Scholar 

  • Dziewonski, A. M., & Anderson, D. L. (1981). Preliminary reference Earth model. Physics of the Earth and Planetary Interiors, 25(4), 297–356.

    Article  Google Scholar 

  • Emter, D. (1997). Tidal triggering of earthquakes and volcanic events. In H. Wilhelm, W. Zürn, & H.-G. Wenzel (Eds.), Tidal phenomena (Vol. 66, pp. 293–309). Lecture Notes in Earth Sciences Heidelberg: Springer.

  • Grafarend, E. (1986). Three-dimensional deformation analysis: Global vector spherical harmonic and local finite element representation. Tectonophysics, 130(1–4), 337–359.

    Article  Google Scholar 

  • Heaton, T. H. (1975). Tidal triggering of earthquakes. Geophysical Journal of the Royal Astronomical Society, 43, 307–326.

    Article  Google Scholar 

  • Heaton, T. H. (1982). Tidal triggering of earthquakes. Bulletin of the Seismological Society of America, 72(6), 2181–2200.

    Google Scholar 

  • Houston, H. (2015). Low friction and fault weakening revealed by rising sensitivity of tremor to tidal stress. Nature Geoscience, 8, 409–415.

    Article  Google Scholar 

  • Ide, S., Yabe, S., & Tanaka, Y. (2016). Earthquake potential revealed by tidal influence on earthquake size–frequency statistics. Nature Geoscience. doi:10.1038/ngeo2796.

    Google Scholar 

  • Kanamori, H. (1994). Mechanics of Earthquakes. Annual Reviews of Earth and Planetary Sciences, 22, 207–237.

    Article  Google Scholar 

  • Li, Q., & Xu, G.-M. (2013). Precursory pattern of tidal triggering of eartquakes. Natural Hazards and Earth System Sciences, 13, 2605–2618.

    Article  Google Scholar 

  • Métivier, L., de Viron, O., Conrad, C. P., Renault, S., Diament, M., & Patau, G. (2009). Evidence of earthquake triggering by the solid earth tides. Earth and Planetary Science Letters, 278, 370–375.

    Article  Google Scholar 

  • Molodensky, M. S. (1953). Elastic tides, free nutations and some questions concerning the inner structure of the Earth. Trudi Geofizitseskogo Instituta Akademii Nauk of the USSR, 19(146), 3–42.

    Google Scholar 

  • Montessus de Ballore, F. (1911). La sismologie moderne: les tremblements de terre. Colin: Libraire A.

    Book  Google Scholar 

  • Perrey, A. (1875). Sur la fréquences des tremblements de terre relativement a l’age de la lune. Comptes Rendus hebdomadaires des séances de la Académie des Sciences, 81, 690–692.

    Google Scholar 

  • Pertzev, B. P. (1976). Influence of the oceanic tides. Physics of the Solid Earth, 1, 13–27.

    Google Scholar 

  • Schuster, A. (1897). On lunar and solar periodicities of earthquakes. Proceedings of the Royal Society of London, 61, 455–465.

    Article  Google Scholar 

  • Schuster, A. (1911). Some problems of seismology. Bulletin of the Seismological Society of America, 1, 97–100.

    Google Scholar 

  • Stein, R. S. (2004). Tidal triggering caught in the act. Science, 305(5688), 1248–1249. doi:10.1126/sciencee.1100726.

    Article  Google Scholar 

  • Stroup, D. F., Bohnenstiehl, D. R., Tolstoy, M., Waldhauser, F., & Weekly, R. T. (2007). Pulse of the seafloor: Tidal triggering of microearthquakes at 9 500 N East Pacific Rise. Geophysical Research Letters, 34, L15301. doi:10.1029/2007GL030088.

    Article  Google Scholar 

  • Takeuchi, H. (1953). On the earth tide of the compressible earth of variable density and elasticity. Transactions American Geophysical Union, 31(5), 651–689.

    Article  Google Scholar 

  • Tanaka, S. (2010). Tidal triggering of earthquakes precursory to the recent Sumatra megathrust earthquakes of 26 December 2004 (Mw 9.0), 28 March 2005 (Mw 8.6), and 12 September 2007 (Mw 8.5). Geophysical Research Letters, 37, 2. doi:10.1029/2009GL041581.

    Article  Google Scholar 

  • Tanaka, S. (2012). Tidal triggering of earthquake prior to the 2011 Tohoku-Oki eartquake(MW = 9.1). Geophysical Research Letters, 39, 7. doi:10.1029/2012GL051179.

    Google Scholar 

  • Tanaka, S., Sato, H., Matsumura, S., & Ohtake, M. (2006). Tidal triggering of earthquakes in the subducting Philippine sea plate beneath the locked zone of the plate interface in the Tokai region. Tectonophysics, 417, 69–80.

    Article  Google Scholar 

  • Tormann, T., Enescu, B., Woessner, J., & Wiemer, S. (2015). Randomness of megathrust earthquakes implied by rapid stress recovery after the Japan earthquake. Nature Geoscience, 8(2), 152–158.

    Article  Google Scholar 

  • Tsuruoka, H., Ohtake, M., & Sato, H. (1995). Statistical test of the tidal triggering of earthquakes: Contribution of the ocean tide loading effect. Geophysical Journal International, 122(1), 183–194.

    Article  Google Scholar 

  • Varga, P., & Grafarend, E. (1996). Distribution of the lunisolar tidal elastic stress tensor components within the Earth’s mantle. Physics of the Earth and Planetary Interiors, 96, 285–297.

    Article  Google Scholar 

  • Varga, P., Rogozhin, E. A., Süle, B., & Andreeva, N. V. (2017). A study of energy released by great (M7) deep focus seismic events having regard to the May 24, 2013 Mw 8.3 earthquake the Sea of Okhotsk, Russia. Izvestiya, Physics of the Solid Earth, 53(5), 385–409.

  • Vergos, G. S., Arabelos, D., & Contadakis, M. E. (2015). Evidence for tidal triggering on the earthquakes of the Hellenic arc, Greece. Physics and Chemistry of the Earth Parts A/B/C, 85–86, 210–215.

    Article  Google Scholar 

  • Vidale, J. E., Agnew, D. C., Johnston, M. J. S., & Oppenheimer, D. H. (1998). Absence of earthquake correlation with Earth tides: An indication of high preseismic fault stress rate. Journal of Geophysical Research-Solid Earth, 103, 24567–24572.

    Article  Google Scholar 

  • Wilcock, W. S. D. (2009). Tidal triggering of earthquakes in the Northeast Pacific Ocean. Geophysical Journal International, 179(2), 1055–1070.

    Article  Google Scholar 

  • Young, D., & Zürn, W. (1979). Tidal triggering of earthquakes in the Swabian Jura? Journal of Geophysics, 45, 171–182.

    Google Scholar 

Download references

Acknowledgements

We thank our reviewers (Walter Zürn and an anonymous colleague) for their helpful comments. The research described in this paper was completed during research stay of P. Varga (01.03.2016–31.05.2016) supported by the Alexander Humboldt Foundation at the Department of Geodesy and Geoinformatics, Stuttgart University. P. Varga thanks Professor Nico Sneeuw for the excellent research conditions provided by him. Financial support from the Hungarian Scientific Research Found OTKA (Project K12508) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Péter Varga.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Varga, P., Grafarend, E. Influence of Tidal Forces on the Triggering of Seismic Events. Pure Appl. Geophys. 175, 1649–1657 (2018). https://doi.org/10.1007/s00024-017-1563-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-017-1563-5

Keywords

  • Spherical tidal stress tensor
  • zonal, tesseral and sectorial tides
  • oceanic tidal load