Pure and Applied Geophysics

, Volume 174, Issue 7, pp 2621–2629 | Cite as

Estimating the Wet-Rock P-Wave Velocity from the Dry-Rock P-Wave Velocity for Pyroclastic Rocks

  • Sair KahramanEmail author
  • Mustafa Fener
  • Cumhur Ozcan Kilic


Seismic methods are widely used for the geotechnical investigations in volcanic areas or for the determination of the engineering properties of pyroclastic rocks in laboratory. Therefore, developing a relation between the wet- and dry-rock P-wave velocities will be helpful for engineers when evaluating the formation characteristics of pyroclastic rocks. To investigate the predictability of the wet-rock P-wave velocity from the dry-rock P-wave velocity for pyroclastic rocks P-wave velocity measurements were conducted on 27 different pyroclastic rocks. In addition, dry-rock S-wave velocity measurements were conducted. The test results were modeled using Gassmann’s and Wood’s theories and it was seen that estimates for saturated P-wave velocity from the theories fit well measured data. For samples having values of less and greater than 20%, practical equations were derived for reliably estimating wet-rock P-wave velocity as function of dry-rock P-wave velocity.


Pyroclastic rocks dry- and wet-rock P-wave velocity regression analysis 



This study has been supported by the Turkish Academy of Sciences (TUBA), in the framework of the Young Scientist Award Program (EA-TUBA-GEBIP/2001-1-1).

Supplementary material

24_2017_1561_MOESM1_ESM.docx (31 kb)
Supplementary material 1 (DOCX 30 kb)


  1. Bourbié, T., Coussy, O., & Zinszner, B. (1987). Acoustics of porous media. Parıs: Editions Technip.Google Scholar
  2. Carcione, J. M. (2001). Wave fields in real media. Theory and numerical simulation of wave propagation in anisotropic, anelastic and porous media (1st ed., p. 390). Amsterdam: Pergamon Press.Google Scholar
  3. Carcione, J. M. (2007). Wave fields in real media. Theory and numerical simulation of wave propagation in anisotropic, anelastic, porous and electromagnetic media (2nd ed., p. 515). Amsterdam: Elsevier.Google Scholar
  4. David, E. C., & Zimmerman, R. W. (2012). Pore structure model for elastic wave velocities in fluid-saturated sandstones. Journal of Geophysical Research, 117, JB07210. doi: 10.1029/2012JB009195.CrossRefGoogle Scholar
  5. Gassmann, F. (1951) Über die Elastizität poröser Medien. Zürich: Inst. für Geophysik an der ETH.Google Scholar
  6. Gregory, A. R. (1976). Fluid saturation effects on dynamic elastic properties of sedimentary rocks. Geophysics, 41, 721–895.CrossRefGoogle Scholar
  7. Guéguen, Y., & Palciauskas, V. (1994). Introduction to the physics of rocks (p. 294p). Princeton: Princeton University Press.Google Scholar
  8. Kahraman, S. (2007). The correlations between the saturated and dry P-wave velocity of rocks. Ultrasonics, 47, 341–348.CrossRefGoogle Scholar
  9. Kahraman, S. (2014). The determination of uniaxial compressive strength from point load strength for pyroclastic rocks. Engineering Geology, 170, 33–42.CrossRefGoogle Scholar
  10. Krief, M., Garat, J., Stellingwerff, J., & Ventre, J. (1990). A petrophysical interpretation using the velocities of P and S waves (full-waveform sonic). The Log Analyst, 31(6), 355–369.Google Scholar
  11. Lama, R. D., & Vutukuri, V. S. (1978). Handbook on mechanical properties of rocks (Vol. 2, p. 481). Clausthal: Trans Tech Publications.Google Scholar
  12. Nur, A., & Simmons, G. (1969). The effect of saturation on velocity in low porosity rocks. Earth and Planetary Science Letters, 7, 183–193.CrossRefGoogle Scholar
  13. Peng, D., Yin, C., Zhao, H., & Liu, W. (2016). An estimation method of pore structure and mineral moduli based on Kuster–Toksöz (KT) Model and Biot’s coefficient. Acta Geophysica, 64(6), 2337–2355.CrossRefGoogle Scholar
  14. Pimienta, L., Fortin, J., & Guéguen, Y. (2014). Investigation of elastic weakening in limestone and sandstone samples from moisture adsorption. Geophysical Journal International, 199(1), 335–347.CrossRefGoogle Scholar
  15. Ramana, Y. V., & Venkatanarayana, B. (1973). Laboratory studies on Kolar rocks. International Journal of Rock Mechanics and Mining Sciences, 10, 465–489.CrossRefGoogle Scholar
  16. Thill, R. E., & Bur, T. R. (1969). An automated ultrasonic pulse measurement system. Geophysics, 34, 101–105.CrossRefGoogle Scholar
  17. Toprak, V., Keller, J., & Schumacher, R. (1994). Volcano-tectonic features of the Cappadocian volcanic province. International Volcanological Congress-Excursion Guide (p. 58). Turkey: Middle East Technical University.Google Scholar
  18. Wood, A. B. (1941). A textbook of sound (p. 578). London: G. Bell and Sons Ltd.Google Scholar
  19. Wyllie, M. R. J., Gregory, A. R., & Gardner, L. W. (1956). Elastic wave velocities in heterogeneous and porous media. Geophysics, 21, 41–70.CrossRefGoogle Scholar
  20. Wyllie, M. R. J., Gregory, A. R., & Gardner, G. H. F. (1958). An experimental investigation of factors affecting elastic wave velocities in porous media. Geophysics, 23, 459–493.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing 2017

Authors and Affiliations

  • Sair Kahraman
    • 1
    Email author
  • Mustafa Fener
    • 2
  • Cumhur Ozcan Kilic
    • 2
  1. 1.Mining Engineering DepartmentHacettepe UniversityAnkaraTurkey
  2. 2.Geological Engineering DepartmentAnkara UniversityAnkaraTurkey

Personalised recommendations