Advertisement

Pure and Applied Geophysics

, Volume 174, Issue 7, pp 2763–2771 | Cite as

Seasonal and Lunar Month Periods Observed in Natural Neutron Flux at High Altitude

  • Yuri Stenkin
  • Victor Alekseenko
  • Zeyu Cai
  • Zhen Cao
  • Claudio Cattaneo
  • Shuwang Cui
  • Elio Giroletti
  • Dmitry Gromushkin
  • Cong Guo
  • Xuewen Guo
  • Huihai He
  • Ye Liu
  • Xinhua MaEmail author
  • Oleg Shchegolev
  • Piero Vallania
  • Carlo Vigorito
  • Jing Zhao
Article

Abstract

Air radon concentration measurement is useful for research on geophysical effects, but it is strongly sensitive to site geology and many geophysical and microclimatic processes such as wind, ventilation, air humidity and so on inducing very big fluctuations on the concentration of radon in air. On the contrary, monitoring the radon concentration in soil by measuring the thermal neutron flux reduces environmental effects. In this paper, we report some experimental results on the natural thermal neutron flux as well as on the concentration of air radon and its variations at 4300 m asl. These results were obtained with unshielded thermal neutron scintillation detectors (en-detectors) and radon monitors located inside the ARGO-YBJ experimental hall. The correlation of these variations with the lunar month and 1-year period is undoubtedly confirmed. A method for earthquake prediction provided by a global net of en-detectors is currently under study.

Keywords

Thermal neutron radon lunar month periods seasonal periods 

Notes

Acknowledgements

This work was supported in Russia by RFBR (Grants 14-02-00996 and 13-02-00574), RAS Presidium Program “High energy physics and neutrino astrophysics”, and in China by NSFC (Nos. 10975046, 11375052). We also acknowledge the support of the ARGO-YBJ collaboration.

References

  1. Alekseenko, V. V., Arneodo, F., et al. (2015). Decrease of atmospheric neutron counts observed during thunderstorms. Physical Review Letter, 114, 125003.CrossRefGoogle Scholar
  2. Alekseenko, V. V., Arneodo, F., & Bruno, G. et al. (2013). Sporadic variations of thermal neutron background measured by a global net of the en-detectors. The 33rd international cosmic ray conference proceeding, Rio De Janeiro, ID 568.Google Scholar
  3. Alekseenko, V. V., Gavrilyuk, Yu M, Gromushkin, D. M., et al. (2009). Correlation of variations in the thermal neutron flux from the earth’s crust with the moon’s phases and with seismic activity. Izvestiya Physics of the Solid Earth, 45(8), 709–718.CrossRefGoogle Scholar
  4. Alekseenko, V. V., Gavrlyuk, Yu M, Kuzminov, V. V., & Stenkin, Yu V. (2010). Tidal effect in the Radon-due neutron flux from the earth’s crust. Journal of Physics Conference Series., 203, 012045.CrossRefGoogle Scholar
  5. Alekseenko, V. V., Gromushkin, D. M., & Stenkin, Yu V. (2011). Comparative measurements of thermal neutron fluxes at ground level at the Baksan neutrino observatory and LGNS laboratory. Bulletin of the Russian Academy of Sciences Physics, 75(6), 857–859.CrossRefGoogle Scholar
  6. Bartoli, B. et al. (2016). Detection of thermal neutrons with the PRISMA-YBJ array in extensive air showers selected by the ARGO-YBJ Experiment. Astroparticle Physics. doi: 10.1016/j.astropartphys.2016.04.007. arXiv:1512.01326 [astro-ph.IM].
  7. Cigolini, C., Poggi, P., Ripepe, M., et al. (2009). Radon surveys and real-time monitoring at stromboli volcano: Influence of soil temperature, atmospheric pressure and tidal forces on \(^{222}\)Rn degassing. Journal of Volcanology and Geothermal Research, 184, 381–388.CrossRefGoogle Scholar
  8. D’ettorre Piazzoli, B: on behalf of the ARGO-YBJ Collaboration. (2011). Highlights from the ARGO-YBJ Experiment. The 32nd international cosmic ray conference proceeding, Beijing, 12, pp. 93–106.Google Scholar
  9. Etiope, G., & Martinelli, G. (2002). Migration of carrier and trace gases in the geosphere: An overview. Physics of the Earth and Planetary Interiors, 129, 185–204.CrossRefGoogle Scholar
  10. Firstov, P. P. (2015). Kamchatka Branch of Geophysical Servey of Russian Academy of Sciences, private communications.Google Scholar
  11. Firstov, P. P., & Rudakov, V. P. (2003). Results of recording of subsurface Radon in 1997–2000 at the Petropavlovsk Kamchatski geodynamic research area. Vulkanologiya i Seismologiya, 1, 26–41.Google Scholar
  12. Groves-Kirkby, C. J., & Denman, A. R. et al. (2004). Periodicity in domestic radon time series—evidence for earth tides. Proc. IRPA’11, Madrid.Google Scholar
  13. Kies, A., Majerus, J., & D’oreye De Lantremange, N. (1999). Underground Radon gas concentrations related to earth tides. Nuovo Cimento Societics Italiana di Fisica C, 22, 287–293.Google Scholar
  14. Prisma-Ybj Collaboration. (2013). Coincident air shower events between ARGO-YBJ and PRISMA-YBJ. The 33rd ICRC proceeding, Rio de Janeiro, ID 606.Google Scholar
  15. Richon, P., Moreau, L., et al. (2012). Evidence of both M2 and O1 earth tide waves in Radon-222 air concentration measured in a subglacial laboratory. Journal of Geophysical Research, 117, B12404.CrossRefGoogle Scholar
  16. Stenkin Y. V. (2010) Large scintillator detector for thermal neutron recording. In: Editor: M Sidorov, O Ivanov (Eds.) Nuclear track detectors: Design, methods and applications. Nova Science Publishers, Inc., New York, Chapter 10, pp. 253–256. ISBN: 978-1-60876-826-4Google Scholar
  17. Yakovleva, V. S. (2003). The Radon flux density from the earth’s surface as an indicator of a seismic activity. Proceedings of ICGG7, Copernicus GmbH, 28–30.Google Scholar
  18. Zmazek, B., Todorovski, L., et al. (2003). Application of decision trees to the analysis of soil Radon data for earthquake prediction. Applied Radiation and Isotopes, 58, 697–706.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing 2017

Authors and Affiliations

  • Yuri Stenkin
    • 1
    • 2
  • Victor Alekseenko
    • 1
  • Zeyu Cai
    • 3
  • Zhen Cao
    • 4
  • Claudio Cattaneo
    • 5
  • Shuwang Cui
    • 3
  • Elio Giroletti
    • 5
    • 6
  • Dmitry Gromushkin
    • 2
  • Cong Guo
    • 4
    • 7
  • Xuewen Guo
    • 3
  • Huihai He
    • 4
  • Ye Liu
    • 8
  • Xinhua Ma
    • 4
    Email author
  • Oleg Shchegolev
    • 1
  • Piero Vallania
    • 9
    • 10
  • Carlo Vigorito
    • 10
    • 11
  • Jing Zhao
    • 4
  1. 1.Institute for Nuclear ResearchRussian Academy of ScienceMoscowRussia
  2. 2.National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)MoscowRussia
  3. 3.The College of Physics Science and Information EngineeringHebei Normal UniversityShijiazhuangChina
  4. 4.Key Laboratory of Particle Astrophysics, Institute of High Energy PhysicsChinese Academy of SciencesBeijingChina
  5. 5.Dipartimento di FisicaUniversità degli Studi di PaviaPaviaItaly
  6. 6.Istituto Nazionale di Fisica NuclearePaviaItaly
  7. 7.University of Chinese Academy of ScienceBeijingChina
  8. 8.The School of PhysicsShandong UniversityJinanChina
  9. 9.Osservatorio Astrofisico di Torino dell’Istituto Nazionale di AstrofisicaTorinoItaly
  10. 10.Istituto Nazionale di Fisica NucleareTorinoItaly
  11. 11.Dipartimento di Fisica dell’Università di TorinoTorinoItaly

Personalised recommendations