Skip to main content
Log in

Dynamic Rupture Modelling of the 1999 Düzce, Turkey Earthquake

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The dynamic rupture process and near-source ground motion of the 1999 Mw 7.1 Düzce Earthquake are simulated. The fault rupture is governed by the slip-weakening friction model coupled to a three-dimensional viscoelastic wave equation. The problem is solved numerically by a 3-D dynamic rupture code that uses a generalized finite difference method. Initial parameterization of stress drop (\(\Delta \tau\)) and strength excess (\(S_{\text{e}}\)) for dynamic rupture calculations is obtained from the slip velocity distribution of a kinematic waveform inversion (KI) model by solving the elastodynamic equation with the kinematic slip as a boundary condition. Using the kinematic slip distribution and observed ground motion as constraints, a trial and error procedure was followed to define the stress parameterization. Preferred model describes the source in terms of stress with three asperities (located, respectively, at the deep, middle and shallow) and strong barriers between asperities. \(S_{\text{e}}\) is as high as 19 Mpa at barriers between the three asperities and \(\Delta \tau\) is maximum about 40 Mpa at the deepest asperity. This heterogeneity in stress distribution produces abrupt jumps in rupture velocity, exhibiting locally apparent rupture speed exceeding the P wave velocity at the borders between barriers and asperities, due to sharp changes of fault strength and stress drop at those areas. Overall, consistent with other studies, the rupture propagation is dominated by supershear speed toward the eastern asperities and at shallow surface. Simulated surface rupture at the eastern fault is consistent with other studies; nevertheless, the western shallower parts did not rupture during the simulation, suggesting that those regions may have already broken during the 1999 Kocaeli event, which occurred three months earlier. Ground motion simulation catches the major characteristics of the observed waveforms. Distribution of simulated peak ground velocity (PGV) in low frequency (0.1–0.5 Hz.) inside the study area reveals the propagation pattern on the field, with PGV reaching to 1.2 and 2.2 m/s in the NS and EW components, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aagaard, B. T., & Heaton, T. H. (2004). Near-source ground motions from simulations of sustained intersonic and supersonic fault ruptures. Bulletin of the Seismological Society of America, 94(6), 2064–2078.

    Article  Google Scholar 

  • Andrews, D. J. (1976). Rupture velocity of plane-strain shear cracks. Journal of Geophysical Research, 81, 5679–5687.

    Article  Google Scholar 

  • Aochi, H., & Fukuyama, E. (2002). Three-dimensional nonplanar simulation of the 1992 Landers earthquake. Journal of Geophysical Research, V107(B2), 2035. doi:10.1029/2000JB000061.

    Article  Google Scholar 

  • Aochi, H., & Madariaga, R. (2003). The 1999 Izmit, Turkey, earthquake: non-planar fault structure, dynamic rupture process and strong ground motion. Bulletin of the Seismological Society of America, 93, 1249–1266. doi:10.1785/0120020167.

    Article  Google Scholar 

  • Armijo, R. (2005). Submarine fault scarps in the Sea of Marmara pull-apart (North Anatolian fault): implications for seismic hazard in Istanbul. Geochemistry Geophysics Geosystems, 6(6), Q06009.

    Article  Google Scholar 

  • Birgören, G., Sekiguchi, H., & Irikura, K. (2004). Rupture model of the 1999 Düzce, Turkey, earthquake deduced from high and low frequency strong motion data. Geophysical Research Letters, V 31, L05610.

    Google Scholar 

  • Bouchon, M. (1997). The state of stress on some faults of the San Andreas system as inferred from near-field strong motion data. Journal of Geophysical Research, 102, 11731–11744.

    Article  Google Scholar 

  • Bouchon, M., Bouin, M., Karabulut, H. M., Toksöz, N., Dietrich, M., & Rokasis, A. J. (2001). How fast is rupture during an earthquake? New Insight from the 1999 Turkey Earthquakes. Geophysical Research Letters, 28, 2723–2726.

    Article  Google Scholar 

  • Bouin, M. P., Bouchon, M., Karabulut, H., & Aktar, M. (2004). Rupture process of the 1999 November 12 Düzce (Turkey) earthquake deduced from strong motion and Global Positioning System measurements. Geophysical Journal International, 159, 207–211.

    Article  Google Scholar 

  • Causse, M., Dalguer, L.A., Mai, P.M. (2013). Variability of dynamic source parameters inferred from kinematic models of past earthquakes. Geophysical Journal International, 196(3), 1754–1769. doi:10.1093/gji/ggt478.

  • Dalguer, L. A., & Day, S. M. (2006). Comparison of fault representation methods in finite difference simulations of dynamic rupture. Bulletin of the Seismological Society of America, 96, 1764–1778.

    Article  Google Scholar 

  • Dalguer, L. A., & Day, S. M. (2007). Staggered-grid split-node method for spontaneous rupture simulation. Journal of Geophysical Research, 112, B02302. doi:10.1029/2006JB004467.

    Article  Google Scholar 

  • Dalguer, L. A., & Irikura, K. (2003). Some characteristics of the rupture process of the 1999 Kocaeli (Turkey) earthquake implied from dynamic modeling. Sapporo: IUGG Assembly.

    Google Scholar 

  • Dalguer, L. A., Irikura, K., Riera, J., & Chiu, H. C. (2001). The Importance of the dynamic source effects on strong ground motion during the 1999 Chi-Chi (Taiwan) earthquake: brief interpretation of the damage distribution on buildings. Bulletin of the Seismological Society of America, 95, 1112–1127.

    Google Scholar 

  • Dalguer, L. A., Irikura, K., Zhang, W., & Riera, J. D. (2002). Distribution of dynamic and static stress changes during 2000 Tottori (Japan) earthquake: brief interpretation of the earthquake sequences; foreshocks, mainshock and aftershocks. Geophysical Research Letters, 29(16), 1758.

    Article  Google Scholar 

  • Dalguer, L. A., Miyake, H., Day, S. M., & Irikura, K. (2008). Surface rupturing and buried dynamic rupture models calibrated with statistical observations of past earthquakes. Bulletin of the Seismological Society of America, 98, 1147–1161. doi:10.1785/0120070134.

    Article  Google Scholar 

  • Day, S. M. (1982). Three-dimensional simulation of spontaneous rupture: the effect of nonuniform prestress. Bulletin of the Seismological Society of America, 72, 1881–1902.

    Google Scholar 

  • Day, S. M., Dalguer, L. A., Lapusta, N., & Liu, Y. (2005). Comparison of finite difference and boundary integral solutions to three-dimensional spontaneous rupture. Journal of Geophysical Research, 110, B12307. doi:10.1029/2005JB003813.

    Article  Google Scholar 

  • Day, S. M., Yu, G., & Wald, D. J. (1998). Dynamic stress changes during earthquake rupture. Bulletin of the Seismological Society of America, 88, 512–522.

    Google Scholar 

  • Duan, B. (2012). Dynamic rupture of the 2011 Mw 9.0 Tohoku-Oki earthquake: roles of a possible subducting seamount. Journal of Geophysical Research, 117, B05311. doi:10.1029/2011JB009124.

    Article  Google Scholar 

  • Dunham, E. M., & Archuleta, R. J. (2005). Near-source ground motion from steady state dynamic rupture pulses. Geophysical Research Letters, 32, L03302. doi:10.1029/2004GL021793.

    Article  Google Scholar 

  • Ely, G. P., Day, S. M., & Minster, J. B. H. (2009). A support-operator method for 3D rupture dynamics. Geophysical Journal International, 177(3), 1140–1150. doi:10.1111/j.1365-246X.2009.04117.x.

    Article  Google Scholar 

  • Galvez, P., Dalguer, L. A., Ampuero, J. P., & Giardini, D. (2016). Rupture reactivation during the 2011 Mw 9.0 Tohoku earthquake: dynamic rupture and ground motion simulations. Bulletin of the Seismological Society of America, 106(3), 819–831. doi:10.1785/0120150153.

    Article  Google Scholar 

  • Harris, R. A., & Day, S. (1999). Dynamic 3D simulations of earthquakes on En Echelon Faults. Geophysical Research Letters, 26, 2089–2092. doi:10.1029/1999GL900377.

    Article  Google Scholar 

  • Harris, R. A., Dolan, J. F., Hartleb, R., & Day, S. M. (2002). The 1999 Izmit, Turkey, Earthquake: a 3D Dynamic Stress Transfer Model of Intraearthquake Triggering. Bulletin of the Seismological Society of America, 92, 245–255.

    Article  Google Scholar 

  • Konca, A. Ö., Leprince, S., Avouac, J. P., & Helmberger, D. V. (2010). Rupture process of the 1999 Mw 7.1 Düzce earthquake from joint analysis of SPOT, GPS, InSAR, strong-motion, and teleseismic data: a supershear rupture with variable rupture velocity. Bulletin of the Seismological Society of America, 100, 267–288.

    Article  Google Scholar 

  • Lozos, C. L., Harris, R. A., Murray, J. R., & Lienkaemper, J. J. (2015). Dynamic rupture models of earthquakes on the Bartlett Spring Fault, Northern California. Geophysical Research Letters, 2642, 4343–4349. doi:10.1002/2015GL063802.

    Article  Google Scholar 

  • Mai, P. M., Schorlemmer, D., Page, M., Ampuero, J. P., Asano, K., Causse, M., et al. (2016). The earthquake-source inversion validation (SIV) project. Seismological Research Letters, 87(3), 690–708. doi:10.1785/0220150231.

    Article  Google Scholar 

  • Mai, P.M., Somerville, P., Pitarka, A., Dalguer, L.A., Song, S., Beroza, G., Miyake, H., Irikura, K., (2006) On scaling of fracture energy and stress drop in dynamic rupture models: consequences for near-source ground-motions. In: A. McGarr, R. Abercrombie, H. Kanamori (eds.) AGU monograph on radiated energy and physics of earthquake faulting.

  • Marone, C. (1998). Laboratory-derived friction laws and their application to seismic faulting. Annual Review of Earth and Planetary Sciences, 26, 643–696.

    Article  Google Scholar 

  • Marone, C., & Scholz, C. H. (1988). The depth of seismic faulting and the upper transition from stable to unstable slip regimes. Geophysical Research Letters, 15, 621–624.

    Article  Google Scholar 

  • Mello, M., Bhat, H. S., Rosakis, A. J., & Kanamori, H. (2010). Identifying the unique ground motion signatures of supershear earthquakes: theory and experiments. Tectonophysics, 493(2010), 297–326.

    Article  Google Scholar 

  • Mikumo, T., Olsen, K. B., Fukuyama, E., & Yagi, Y. (2003). Stress-breakdown time and slip-weakening distance inferred from slip-velocity functions on earthquake faults. Bulletin of the Seismological Society of America, 93, 264–282.

    Article  Google Scholar 

  • Mindevalli, O. Y., & Mitchell, B. J. (1989). Crustal structure and possible anisotropy in Turkey from seismic surface wave dispersion. Geophysical Journal International, 98, 93–106.

    Article  Google Scholar 

  • Oglesby, D. D., & Day, S. M. (2001). Fault geometry and the dynamics of the 1999 Chi-Chi (Taiwan) earthquake. Bulletin of the Seismological Society of America, 91, 1099–1111.

    Article  Google Scholar 

  • Peyrat, S., Olsen, K. B., & Madariaga, R. (2001). Dynamic modeling of the 1992 Landers earthquake. Journal of Geophysical Research, 106, 26467–26482.

    Article  Google Scholar 

  • Pitarka, A., Dalguer, L. A., Day, S. M., Somerville, P., & Dan, K. (2009). Numerical study of ground motion differences between buried and surface-rupturing earthquakes. Bulletin of the Seismological Society of America, 99(3), 1521–1537. doi:10.1785/0120080193.

    Article  Google Scholar 

  • Quin, H. (1990). Dynamic stress drop and rupture dynamics of the October 1979 Imperial Valley California earthquake. Tectonophysics, 175, 93–117.

    Article  Google Scholar 

  • Ruff, L. J. (1999). Dynamic stress drop of recent earthquaes: variations within subduction zones, pure appl. Geophysical, 154, 409–431.

    Google Scholar 

  • Schmedes, J., & Achuleta, R. J. (2008). Near-source ground motion along strike-slip faults: insights into magnitude saturation of PGV and PGA. Bulletin of the Seismological Society of America, 98(5), 2278–2290. doi:10.1785/0120070209.

    Article  Google Scholar 

  • Sekiguchi, H., & Iwata, T. (2002). Rupture process of the 1999 Kocaeli, Turkey, earthquake estimated from strong-motion waveforms. Bulletin of the Seismological Society of America, 92, 300–311.

    Article  Google Scholar 

  • Shashkov, M. (1996). Conservative finite-difference methods on general grids. Boca Raton: CRC Press.

    Google Scholar 

  • Tinti, E., Cocco, M., Fukuyama, E., & Piatanesi, A. (2009). Dependence of slip weakening distance (Dc) on final slip during dynamic rupture of earthquakes. Geophysical Journal International, 177, 1205–1220.

    Article  Google Scholar 

  • Tinti, E., Fukuyama, E., Piatanesi, A., & Cocco, M. (2005). A kinematic source-time function compatible with earthquake dynamics. Bulletin of the Seismological Society of America, 95, 1211–1223.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK) Project #ÇAYDAG107Y322. First author was also supported by EU-FP6-NERIES Project for her short term visits to ETHZ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gülüm Tanırcan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanırcan, G., Dalguer, L., Bekler, F.N. et al. Dynamic Rupture Modelling of the 1999 Düzce, Turkey Earthquake. Pure Appl. Geophys. 174, 3343–3355 (2017). https://doi.org/10.1007/s00024-017-1531-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-017-1531-0

Keywords

Navigation