Pure and Applied Geophysics

, Volume 174, Issue 8, pp 3209–3218

# New Analytical Solution for Nonlinear Shallow Water-Wave Equations

• Baran Aydin
• Utku Kânoğlu
Article

## Abstract

We solve the nonlinear shallow water-wave equations over a linearly sloping beach as an initial-boundary value problem under general initial conditions, i.e., an initial wave profile with and without initial velocity. The methodology presented here is extremely simple and allows a solution in terms of eigenfunction expansion, avoiding integral transform techniques, which sometimes result in singular integrals. We estimate parameters, such as the temporal variations of the shoreline position and the depth-averaged velocity, compare with existing solutions, and observe perfect agreement with substantially less computational effort.

## Keywords

Tsunami long wave runup shallow water-wave

## Notes

### Acknowledgements

This work is partially supported through the grant provided by Middle East Technical University with the project no: BAP-08-11-DPT2002K120510. We acknowledge the partial support from the Scientific and Technological Research Council of Turkey project no. 109Y387 of the joint research program between Turkey and Greece. This contribution was also partially supported by the project ASTARTE (Assessment, STrategy And Risk Reduction for Tsunamis in Europe), Grant 603839, 7th FP (ENV.2013.6.4-3).

## References

1. Anderson, D., Harris, M., Hartle, H., Nicolsky, D., Pelinovsky, E. N., Raz, A., et al. (2017). Runup of long waves in piecewise sloping U-shaped bays. Pure and Applied Geophysics. doi:.
2. Antuono, M., & Brocchini, M. (2010). Solving the nonlinear shallow-water equations in physical space. Journal of Fluid Mechanics, 643, 207–232. doi:.
3. Aydın, B. (2011). Analytical solutions of shallow-water wave equations. Ph.D. Thesis, Middle East Technical University, Ankara, Turkey.Google Scholar
4. Aydın, B., & Kânoğlu, U. (2007). Wind set-down relaxation. Computer Modeling in Engineering and Sciences (CMES), 21(2), 149–155. doi:.Google Scholar
5. Bernard, E. N., & Titov, V. V. (2015). Evolution of tsunami warning systems and products. Philosophical Transactions of the Royal Society A, 373, 20140371. doi:.
6. Bowman, F. (1958). Introduction to Bessel functions. New York: Dover Publications Inc.Google Scholar
7. Brocchini, M. (1997). Eulerian and Lagrangian aspects of the longshore drift in the surf and swash zones. Journal of Geophysical Research: Oceans, 102(C10), 23,155–23,168. doi:.
8. Brocchini, M., & Peregrine, D. H. (1996). Integral flow properties in the swash zone and averaging. Journal of Fluid Mechanics, 317, 241–273. doi:.
9. Carrier, G. F., & Greenspan, H. P. (1958). Water waves of finite amplitude on a sloping beach. Journal of Fluid Mechanics, 4, 97–109. doi:.
10. Carrier, G. F., & Noiseux, C. F. (1983). The reflection of obliquely incident tsunamis. Journal of Fluid Mechanics, 133, 147–160. doi:.
11. Carrier, G. F., Wu, T. T., & Yeh, H. (2003). Tsunami run-up and draw-down on a plane beach. Journal of Fluid Mechanics, 475, 79–99. doi:.
12. Choi, B. H., Pelinovsky, E., Kim, D. C., Didenkulova, I., & Woo, S.-B. (2008). Two- and three-dimensional computation of solitary wave runup on non-plane beach. Nonlinear Processes in Geophysics, 15, 489–502. doi:.
13. Didenkulova, I., & Pelinovsky, E. (2011a). Nonlinear wave evolution and runup in an inclined channel of a parabolic cross-section. Physics of Fluids, 23, 086602. doi:.
14. Didenkulova, I., & Pelinovsky, E. (2011b). Runup of tsunami waves in U-shaped bays. Pure and Applied Geophysics, 168, 1239–1249. doi:.
15. Fritz, H. M., Phillips, D. A., Okayasu, A., Shimozono, T., Liu, H. J., Mohammed, F., et al. (2012). The 2011 Japan tsunami current velocity measurements from survivor videos at Kesennuma Bay using LiDAR. Geophysical Research Letters, 39(7), L00G23. doi:.
16. Fuentes, M. A., Ruiz, J. A., & Riquelme, S. (2015). The runup on a multilinear sloping beach model. Geophysical Journal International, 201, 915–928. doi:.
17. Harris, M. W., Nicolsky, D. J., Pelinovsky, E. N., Pender, J. M., & Rybkin, A. V. (2016). Run-up of nonlinear long waves in U-shaped bays of finite length: Analytical theory and numerical computations. Journal of Ocean Engineering and Marine Energy, 2(2), 113–127. doi:.
18. Hibberd, S., & Peregrine, D. H. (1979). Surf and run-up on a beach: A uniform bore. Journal of Fluid Mechanics, 95(2), 323–345. doi:.
19. Kânoğlu, U. (2004). Nonlinear evolution and runup-rundown of long waves over a sloping beach. Journal of Fluid Mechanics, 513, 363–372. doi:.
20. Kânoğlu, U., & Synolakis, C. E. (2006). Initial value problem solution of nonlinear shallow water-wave equations. Physical Review Letters, 97, 148501. doi:.
21. Kânoğlu, U., & Synolakis, C. E. (1998). Long wave runup on piecewise linear topographies. Journal of Fluid Mechanics, 374, 1–28. doi:.
22. Kânoğlu, U., Titov, V. V., Aydın, B., Moore, C., Stefanakis, T. S., Zhou, H., et al. (2013). Focusing of long waves with finite crest over constant depth. Proceedings of the Royal Society A, 469, 20130015. doi:.
23. Kânoğlu, U., Titov, V. V., Bernard, E. N., & Synolakis, C. E. (2015). Tsunamis: Bridging science, engineering and society. Philosophical Transactions of the Royal Society A, 373, 20140369. doi:.
24. Madsen, P. A., & Fuhrman, D. R. (2008). Run-up of tsunamis and long waves in terms of surf-similarity. Coastal Engineering, 55(3), 209–223. doi:.
25. Madsen, P. A., & Schäffer, H. G. (2010). Analytical solutions for tsunami runup on a plane beach: Single waves, N-waves and transient waves. Journal of Fluid Mechanics, 645, 27–57. doi:.
26. O’Brien, L., Christodoulides, P., Renzi, E., Stefanakis, T., & Dias, F. (2015). Will oscillating wave surge converters survive tsunamis? Theoretical and Applied Mechanics Letters, 5(4), 160–166. doi:.
27. Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 75, 1135–1154.Google Scholar
28. Okada, Y. (1992). Internal deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 82, 1018–1040.Google Scholar
29. Okal, E. A. (2015). The quest for wisdom: Lessons from 17 tsunamis, 2004–2014. Philosophical Transactions of the Royal Society A, 373, 20140370. doi:.
30. Postacioglu, N., Özeren, M. S., & Canlı, U. (2016). On the resonance hypothesis of tsunami and storm surge runup. Natural Hazards and Earth System Sciences. doi: (in review).
31. Pritchard, D., & Dickinson, L. (2007). The near-shore behaviour of shallow-water waves with localized initial conditions. Journal of Fluid Mechanics, 591, 413–436. doi:.
32. Rybkin, A., Pelinovsky, E. N., & Didenkulova, I. (2014). Nonlinear wave run-up in bays of arbitrary cross-section: Generalization of the Carrier-Greenspan approach. Journal of Fluid Mechanics., 748, 416–432. doi:.
33. Sepulveda, I., & Liu, P. L. F. (2016). Estimating tsunami runup with fault plane parameters. Coastal Engineering, 112, 57–68. doi:.
34. Synolakis, C. E. (1987). The runup of solitary waves. Journal of Fluid Mechanics, 185, 523–545. doi:.
35. Synolakis, C. E., & Bernard, E. N. (2006). Tsunami science before and beyond Boxing Day 2004. Philosophical Transactions of the Royal Society A, 364, 2231–2265. doi:.
36. Synolakis, C. E., Bernard, E. N., Titov, V. V., Kânoğlu, U., & González, F. I. (2008). Validation and verification of tsunami numerical models. Pure and Applied Geophysics, 165(11–12), 2197–2228. doi:.
37. Tadepalli, S., & Synolakis, C. E. (1994). The run-up of N-waves on sloping beaches. Proceedings of the Royal Society A, 445, 99–112. doi:.
38. Tinti, S., & Tonini, R. (2005). Analytical evolution of tsunamis induced by near-shore earthquakes on a constant-slope ocean. Journal of Fluid Mechanics, 535, 33–64. doi:.
39. Titov, V. V., Kânoğlu, U., & Synolakis, C. E. (2016). Development of MOST for real-time tsunami forecasting. Journal of Waterway, Port, Coastal, and Ocean Engineering, 142, 03116004. doi:.