Skip to main content
Log in

Probabilistic Seismic Hazard Deaggregation for Selected Egyptian Cities

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

A probabilistic seismic hazard analysis in terms of peak ground acceleration (PGA) and spectral acceleration (SA) values has been performed for the Egyptian territory. Eighty-eight potential seismic sources (for shallow- and intermediate-depth seismicity) in and around Egypt were identified and characterized based on an updated and unified earthquake catalog spanning the time period from 2200 B.C. until 2013 A.D. A logic-tree approach was followed, after a sensitivity analysis, to consider the epistemic uncertainty in the different input parameters, including the selected ground-motion attenuation models to predict the ground motion for the different tectonic environments. Then the seismic hazard deaggregation results, in terms of distance and magnitude, for the most important cities in Egypt have been computed to help understanding the relative contributions of the different seismic sources. Seismic hazard deaggregation, in particular, was computed for PGA and SA at periods of 0.2, 1.0 and 2.0 s for rock-site conditions, and for 10% probability of exceedance in 50 years. In general, the results at most of the cities indicate that the distance to the seismic sources which mostly contribute to the seismic hazard is mainly controlled by the nearby seismic sources (especially for PGA). However, distant events contribute more to the hazard for larger spectral periods (for 1.0 and 2.0 s). A significant result of this type of work is that seismic hazard deaggregation provides useful data on the distance and magnitude of the contributing seismic sources to the hazard in a certain place, which can be applied to generate scenario earthquakes and select acceleration records for seismic design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdi, E., Mirzaei, N., & Shabani, E. (2013). Ground-motion scenarios consistent with PSH deaggregation for Tehran, capital city of Iran. Natural Hazards and Earth System Sciences, 13, 679–688.

    Article  Google Scholar 

  • Abou Elenean, K. M., & Hussein, H. M. (2007). Source mechanism and source parameters of May 28, 1998 earthquake, Egypt. Journal of Seismology, 11, 259–274.

    Article  Google Scholar 

  • Abrahamson, N. A., & Silva, W. J. (1997). Empirical response spectral attenuation relations for shallow crustal earthquakes. Seismological Research Letters, 68, 94–127.

    Article  Google Scholar 

  • Ambraseys, N. N., Melville, C. P., & Adams, R. D. (1994). The seismicity of Egypt. Arabia and Red Sea: Cambridge University Press.

    Book  Google Scholar 

  • Ambraseys, N. N., Simpson, K. A., & Bommer, J. J. (1996). Prediction of horizontal response spectra in Europe. Earthquake Engineering and Structural Dynamics, 25, 371–400.

    Article  Google Scholar 

  • Badawy, A., & Horváth, F. (1999). Seismicity of the Sinai subplate region: Kinematic implications. Journal of Geodynamics, 27, 451–468.

    Article  Google Scholar 

  • Barani, S., Spallarossa, D., & Bazzuro, P. (2009). Disaggregation of probabilistic ground-motion hazard in Italy. Bulletin of the Seismological Society of America, 99, 2638–2661.

    Article  Google Scholar 

  • Bazzurro, P. (1998). Probabilistic seismic demand analysis. Ph.D. thesis, Stanford University.

  • Bazzurro, P., & Cornell, A. C. (1999). Disaggregation of seismic hazard. Bulletin of the Seismological Society of America, 89, 501–520.

    Google Scholar 

  • Bernreuter, D. L. (1992). Determining the controlling earthquake from probabilistic hazards for the proposed Appendix B. Lawrence Livermore National Laboratory, Report UCRL-JC-111964, Livermore, EE.UU.

  • Boomer, J., Douglas, J., Scherbaum, F., Cotton, F., Bungum, H., & Fah, D. (2010). On the selection of ground-motion prediction equations for seismic hazard analysis. Seismological Research Letters, 81, 783–793.

    Article  Google Scholar 

  • Boore, D. M., & Atkinson, G. M. (2008). Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods between 0.01 s and 10.0 s. Earthquake Spectra, 24, 99–138.

    Article  Google Scholar 

  • Chapman, M. C. (1995). A probabilistic approach to selection of ground motions for engineering design. Bulletin of the Seismological Society of America, 85, 937–942.

    Google Scholar 

  • Cooke, P. (1979). Statistical inference for bounds of random variables. Biometrika, 66, 367–374.

    Article  Google Scholar 

  • Cornell, C. A. (1968). Engineering seismic risk analysis. Bulletin of the Seismological Society of America, 58, 1503–1606.

    Google Scholar 

  • Cotton, F., Scherbaum, F., Bommer, J. J., & Bungum, H. (2006). Criteria for selecting and adjusting ground-motion models for specific target regions: Application to central Europe and rock sites. Journal of Seismology, 10, 137–156.

    Article  Google Scholar 

  • Deif, A., Abou Elenean, K., El-Hadidy, M., Tealeb, A., & Mohamed, A. (2009). Probabilistic seismic hazard maps for Sinai Peninsula, Egypt. Journal of Geophysical Engineering, 6, 288–297.

    Article  Google Scholar 

  • Deif, A., Hamed, H., Ibrahim, H. A., Abou Elenean, K., & El-Amin, E. M. (2011). Seismic hazard assessment in Aswan, Egypt. Journal of Geophysical Enginnering, 8, 531–548.

    Article  Google Scholar 

  • Egyptian National Seismic Network. (ENSN). Bulletins (1998–2010). Earthquakes in and around Egypt. National Research Institute of Astronomy and Geophysics (NRIAG), Cairo, Egypt.

  • Engdahl, E. R., Van Der Hilstand, R., & Buland, R. (1998). Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. Bulletin of Seismological Society of America, 88, 722–743.

    Google Scholar 

  • Esteva, L. (1970). Seismic risk and seismic design decisions. In R. J. Hansen (Ed.), Seismic design for nuclear power plants (pp. 142–182). Massachusetts Institute of Technology Press, Cambridge, MA, USA.

  • Frankel, A. (1995). Mapping seismic hazard in the Central and Eastern United States. Seismological Research Letters, 66, 8–21.

    Article  Google Scholar 

  • Gardner, J. K., & Knopoff, L. (1974). Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian? Bulletin of the Seismological Society of America, 64, 1363–1367.

    Google Scholar 

  • Gutenberg, B., & Richter, C. F. (1944). Frequency of earthquakes in California. Bulletin of the Seismological Society of America, 34, 185–188.

    Google Scholar 

  • Harmsen, S., & Frankel, A. (2001). Geographic deaggregation of seismic hazard in the United States. Bulletin of the Seismological Society of America, 91, 13–26.

    Article  Google Scholar 

  • Harmsen, S., Perkins, D., & Frankel, A. (1999). Deaggregation of probabilistic ground motions in the Central and Eastern United States. Bulletin of the Seismological Society of America, 89, 1–13.

    Google Scholar 

  • International Seismological Centre. (2011). On-line Bulletin. http://www.isc.ac.uk. International Seismological Centre, Thatcham, United Kingdom.

  • Kebeasy, R. M. (1990). Seismicity. In R. Said (Ed.), The geology of Egypt (pp. 51–59). Rotterdam: A.A. Balkerma.

    Google Scholar 

  • Kijko, A., & Singh, M. (2011). Statistical tools for maximum possible earthquake magnitude estimation. Acta Geophysica, 59, 674–700.

    Article  Google Scholar 

  • Maamoun, M., Allam, A., & Megahed, A. (1984). Seismicity of Egypt. Bulletin of Helwan Institute of Astronomy and Geophysics, 4, 109–160.

    Google Scholar 

  • McGuire, R. K. (1995). Probabilistic seismic hazard analysis and design earthquakes: Closing the loop. Bulletin of the Seismological Society of America, 85, 1275–1284.

    Google Scholar 

  • Ordaz, M., Faccioli, E., Martinelli, F., Aguilar, M., Arboleda, J., Meletti, C., et al. (2014). CRISIS 2014: Program for computing seismic hazard. UNAM, Mexico: Institute of Engineering.

    Google Scholar 

  • Panzera, F., Lombardo, G., & Rigano, R. (2011). Use of different approaches to estimate seismic hazard: the study cases of Catania and Siracusa, Italy. Bollettino di Geofisica Teorica ed Applicata, 52, 687–706.

    Google Scholar 

  • Pelaéz, J. A., Hamdache, M., & Casado, C. L. (2005). Updating the probabilistic seismic hazard values of Northern Algeria with the 21 May 2003 M 6.8 Algiers earthquake included. Pure and Applied Geophysics, 162, 2163–2177.

    Article  Google Scholar 

  • Pelaéz, J. A., & López Casado, C. (2002). Seismic hazard estimate at the Iberian Peninsula. Pure and Applied Geophysics, 159, 2699–2713.

    Article  Google Scholar 

  • Pelaéz, J. A., López Casado, C., & Henares, J. (2002). Deaggregation in magnitude, distance, and azimuth in the south and west of the Iberian Peninsula. Bulletin of the Seismological Society of America, 92, 2177–2185.

    Article  Google Scholar 

  • Pollastro, R. M. (2003). Total petroleum systems of the Paleozoic and Jurassic, Greater Ghawar Uplift and adjoining provinces of Central Saudi Arabia and Northern Arabian-Persian Gulf. US. Geological Survey Bulletin 2202-H.

  • Riad, S., & Meyers, H. (1985). Earthquake catalogue for the Middle East countries (1900–1983). National Geophysical Data Centre, World Data Centre A for Solid Earth Geophysics. Rep. SE-40. National Oceanic and Atmospheric Administration (NOAA), US Department of Commerce, Boulder, Colorado, USA.

  • Riad, S., Taeleb, A. A., El Hadidy, S., Basta, N. Z., Abou Elela, A. M., Mohamed, A. A., et al. (2004). Ancient earthquakes from some Arabic sources and catalogue of Middle East historical earthquakes (pp. 71–91). Paris: EGSMA, NARSS, UNDP, UNESCO.

    Google Scholar 

  • Robson, D. S., & Whitlock, J. H. (1964). Estimation of a truncation point. Biometrika, 51, 33–39.

    Article  Google Scholar 

  • Sawires, R., Peláez, J. A., Fat-Helbary, R. E., & Ibrahim, H. A. (2016a). An earthquake catalogue (2200 B.C. to 2013) for seismotectonic and seismic hazard assessment studies in Egypt. In S. D’Amico (Ed.), Earthquakes and their impact on society (pp. 97–136). Berlin: Springer.

    Chapter  Google Scholar 

  • Sawires, R., Peláez, J. A., Fat-Helbary, R. E., & Ibrahim, H. A. (2016b). Updated probabilistic seismic hazard values for Egypt. Bulletin of the Seismological Society of America, 106, 1788–1801.

    Article  Google Scholar 

  • Sawires, R., Peláez, J. A., Fat-Helbary, R. E., Ibrahim, H. A., & García-Hernández, M. T. (2015). An updated seismic source model for Egypt. In A. Moustafa (Ed.), Earthquake engineeringFrom engineering seismology to optimal seismic design of engineering structures (pp. 1–52). Croatia: InTech.

    Google Scholar 

  • Sawires, R., Peláez, J. A., Ibrahim, H. A., & Fat-Helbary, R. E. (2016c). Delineation and characterization of a new seismic source model for seismic hazard studies in Egypt. Natural Hazards, 80, 1823–1864.

    Article  Google Scholar 

  • SHARE-Seismic Hazard Harmonization in Europe. (2013). http://www.share-eu.org/.

  • Tavakoli, B., & Pezeshk, Sh. (2005). Empirical-stochastic ground-motion prediction for Eastern North America. Bulletin of the Seismological Society of America, 95, 2283–2296.

    Article  Google Scholar 

  • Tselentis, G. A., & Danciu, L. (2010). Probabilistic seismic hazard assessment in Greece—Part 3: Deaggregation. Natural Hazards and Earth System Sciences, 10, 51–59.

    Article  Google Scholar 

  • Youngs, R. R., Chiou, S. J., Silva, W. J., & Humphery, J. R. (1997). Strong ground motion attenuation relationships for subduction zone earthquakes. Seismological Research Letters, 68, 58–73.

    Article  Google Scholar 

  • Zhao, J. X., Zhang, J., Asano, A., Ohno, Y., Oouchi, T., Takahashi, T., et al. (2006). Attenuation relations of strong ground motion in Japan using site classification based on predominant period. Bulletin of the Seismological Society of America, 96, 898–913.

    Article  Google Scholar 

  • Ziegler, M. A. (2001). Late Permian to Holocene Paleofacies evolution of the Arabian Plate and its hydrocarbon occurrences. GeoArabia, 6, 445–504.

    Google Scholar 

Download references

Acknowledgements

This research work was supported by the Egyptian Ministry of Higher Education (Cultural Affairs and Missions Sector), Cairo, Egypt, and the Spanish MINECO CGL2015-65602-R Project. We would like to thank Editor Andrzej Kijko and Reviewer Sebastiano D’Amico for their thoughtful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashad Sawires.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sawires, R., Peláez, J.A., Fat-Helbary, R.E. et al. Probabilistic Seismic Hazard Deaggregation for Selected Egyptian Cities. Pure Appl. Geophys. 174, 1581–1600 (2017). https://doi.org/10.1007/s00024-017-1490-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-017-1490-5

Keywords

Navigation