Skip to main content
Log in

Structural Architecture of the Hydrothermal System from Geophysical Data in Hammam Bouhadjar Area (Northwest of Algeria)

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

We determine the structural architecture of the hydrothermal system of Hammam Bouhadjar area (Northwest of Algeria) by the use of geophysical data. New gravity and electrical surveys covered an area of about 48 km2 in 2009. There were 350 gravity measurements made with a sampling of 500 m and 45 electrical soundings (Schlumberger type, AB = 1000 m). The Bouguer anomaly map shows a regression of gravity field towards the NW and SE. All of the observed anomalies are elongated in NE–SW direction. The results obtained from different processing methods (gradients, upward continuation, Euler deconvolution, wavelet transform and modelling) of gravity data were used to generate structural map of the studied area. The vertical and horizontal variations of resistivity confirm the presence of superficial and deeper faults system. Following the geophysical (gravity and electrical) analysis and modelling, we propose a model to explain the origin of the Hammam Bouhadjar thermal waters. We suggest that the hot spring water comes from an aquifer located in sandstones lenses in the Senono-Oligocene Tellian unit. Following the gravity modelling the aquifer is identified at about 800 m, the same depth where the geothermal gradient is insufficient to heat the water. In these circumstances, the aquifer is probably heated by volcanic processes connected with a hot compartment by faults and contacts affecting structures identified in depth. The presence of a conductor along of the horseshoe area suggests that the water percolates into this area and then is drained by the different accidents to invade the whole area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abbassene, F., Chazot, G., Bellon, H., Bruguier, O., Ouabadi, A., Maury, R. C., et al. (2016). A 17 Ma on set for the post-collisional K-rich calc-alkaline magmatism in the Maghrebides: Evidence from Bougaroun (northeastern Algeria) and geodynamic implications. Tectonophysics, 674, 114–134. doi:10.1016/j.tecto.2016.02.013.

    Article  Google Scholar 

  • Abtout, A., Boukerbout, H., Bouyahiaoui, B., & Gibert, D. (2014). Gravimetric evidences of active faults and underground structure of the Cheliff seismogenic basin (Algeria). Journal of African Earth Sciences, 99, 363–373. doi:10.1016/j.jafrearsci.2014.02.011.

    Article  Google Scholar 

  • Baranov, V. (1953). Calcul du gradient vertical du champ de gravité ou du champ magnétique mesuré à la surface du sol. Earth Sciences, Geophysical Prospecting, 1(3), 171–191.

    Article  Google Scholar 

  • Belantour, O. (2001). Le magmatisme miocène de l’Algérois : chronologie de mise en place, pétrologie et implications géodynamiques. Thèse de doctorat, USTHB, Alger.

  • Belhai, M., Fujimitsu, Y., Bouchareb-Haouchine, F.Z., Iwanaga, T., Noto, M. (2014). Geochemistry of the North Western Algerian Geothermal System. In Proceedings, Thirty-Ninth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 24–26, 2014 SGP-TR-202.

  • Belhai, M., Fujimitsu, Y., Bouchareb-Haouchine, F.Z., Nishijima, J. (2015). Geology, geothermometry, isotopes and gas chemistry of the Northern Algerian geothermal system. In Proceedings, World Geothermal Congress. Melbourne, Australia, April 19–25.

  • Benouar, D., Aoudia, A., Maouche, S., & Meghraoui, M. (1994). The 18 August 1994 Mascara (Algeria) earthquake; a quick-look report. Terra Nova, 6, 634–638.

    Article  Google Scholar 

  • Bouillin, J.-P. (1986). Le “bassin maghrébin”: une ancienne limite entre l’Europe et l’Afrique à l’ouest des Alpes. Bulletin de la Société géologique de France, 8(4), 547–558.

    Article  Google Scholar 

  • Boukerbout, H., Gibert, D., & Sailhac, P. (2003). Identification of sources of potential fields with the continuous wavelet transform: Application to VLF data. Geophysical Research Letter, 30(8), 1427. doi:10.1029/2003GL016884.

    Article  Google Scholar 

  • Bouyahiaoui, B., Djeddi, M., Abtout, A., Boukerbout, H., Akacem, N. (2011). Étude de la croûte archéenne du môle In Ouzzal (Hoggar Occidentale) par la method gravimétrique: identification des sources par la transformée en ondelettes continue, Bulletin de Service Géologique National. N°22, P259–274.

  • Bracène, R., & Frizon de Lamotte, D. (2002). The origin of intraplate deformation in the Atlas system of western and central Algeria: from Jurassic rifting to Cenozoic-Quaternary inversion. Tectonophysics, 357, 207–226.

    Article  Google Scholar 

  • Coulon, C., Megartsi, M., Fouracade, S., Maury, R. C., Bellon, H., Louni-Hacini, A., et al. (2002). Post-collisional transition from calco-alkaline.to alkaline volcanism during the Neogene in Oranie (Algeria): magmatic expression of a slab break off. Lithos, 62, 87–110.

    Article  Google Scholar 

  • Durand-Delga, M., & Fontboté, J. (1980). Le cadre structural de la Méditerranée occidentale, Mémoire. BRGM, 11, 65–85.

    Google Scholar 

  • Fedi, M., Premiceri, R., Quarta, T., & Villani, A. V. (2004). Joint application of continuous and discrete wavelet transform on gravity data to identify shallow and deep sources. Geophysical Journal International, 156, 7–21. doi:10.1111/j1365-246X.2004.02118.x.

    Article  Google Scholar 

  • Fenet, B. (1975). Recherche sur l’alpinisation de la bordure septentrionale du bouclier africain, à partir de l’étude d’un élément de l’orogène nord maghrébin : les Monts du Djebel Tessala et les Massifs du littoral oranais. Thèse Doc Es Sci. Université de Nice.

  • Frizon de Lamotte, D., Saint Bezar, B., Bracène, R., & Mercier, E. (2000). The two main steps of the Atlas building and geodynamics of the western Mediterranean. Tectonics, 19(4), 740–761.

    Article  Google Scholar 

  • Gibert, D., & Galdeano, A. (1985). A computer program to perform transformations of gravimetric and aeromagnetic survey. Computers & Geoscience, 11, 553–588.

    Article  Google Scholar 

  • Guardia, P. (1975). Géodynamique de la marge alpine du continent africain d’après l’étude de l’Oranie nord occidentale. Relations structurales et paléogéographiques entre le Rif externe, le Tell et l’avant-pays atlasique. Thèse Doc Es Sci. Université de Nice. N° A.O.11 417.

  • Hornby, P., Boschetti, F., & Horovitz, F. G. (1999). Analysis of potential field data in the waveletdomain. Geophysical Journal International, 137, 175–196.

    Article  Google Scholar 

  • Issaadi, A. (1996). Mécanismes de fonctionnement des systèmes hydrothermaux Application aux eaux thermo-minérales algériennes et aux eaux de Hammam Bou-Hadjar. Bulletin du Service Géologique de l’Algérie, 7(1), 71–85.

    Google Scholar 

  • Keller, G. V. (1966). Dipole method for deep resistivity studies. Geophysics, 31(6), 1088–1104. doi:10.1190/1.1439842.

    Article  Google Scholar 

  • Loke, M. H., & Barker, R. D. (1996). Practical techniques for 3D resistivity surveys and data inversion. Earth Sciences, Geophysical Prospecting., 44(3), 499–523.

    Article  Google Scholar 

  • Louni-Hacini, A., Bellon, H., Maury, R. C., Megartsi, M., Coulon, C., Belkacem, S., et al. (1995). Datation 40 K-40Ar de la transition du volcanisme calco-alcalin au volcanisme alcalin en Oranie au Miocène supérieur. Comptes Rendus de l’Académie des Sciences Paris, 321, 975–982.

    Google Scholar 

  • Maouche, S., Meghraoui, M., Morhange, C., Belabbes, S., Bouhadad, Y., & Haddoum, H. (2011). Active coastal thrusting and folding, and uplift rate of the Sahel Anticline and Zemmouri earthquake area (Tell Atlas, Algeria). Tectonophysics, 509(1–2), 69–80.

    Article  Google Scholar 

  • Maury, R. C., Fourcade, S., Coulon, C., El Azzouzi, M., Bellon, H., Coutelle, A., et al. (2000). Post-collision neogene magmatism of the Mediterranean Maghreb margin: a consequence of slab Breakoff. Comptes Rendus de l’Académie des Sciences Paris, 331, 159–173.

    Google Scholar 

  • Megartsi, M. (1985). Le volcanisme mio-plio-quaternaire de l’Oranie Nord occidentale. Thèse Doc. Etat, U.S.T.H.B, Alger, 296 p.

  • Meghraoui, M. (1988). Géologie des zones sismiques du Nord de l’Algérie. Paléosismologie, Tectonique Active et Synthèse sismotectonique, Thèse de Doctorat d’Etat, Université de Paris-Sud Orsay, pp 355.

  • Meghraoui, M., & Doumaz, F. (1996a). Earthquake-induced flooding and paleoseismicity of the El Asnam, Algeria, fault-related fold. Journal of Geophysical Research. 101, 17, 617–17,644.

  • Meghraoui, M., Morel, J. L., Andrieux, J., & Dahmani, M. (1996). Néotectonique de la chaîne Tello-Rifaine et de la Mer d’Alboran: une zone complexe de convergence continent-continent”. Bulletin de la Société Géologique de France, 167, 143–159.

    Google Scholar 

  • Mikhailov, V., Galdeano, A., Diament, M., Gvishiani, A., Agayan, S., Bogoutdinov, S., et al. (2003). Application of artificial intelligence for Euler solutions clustering. Geophysics, 68, 168180. doi:10.1190/1.1543204.

    Article  Google Scholar 

  • Moreau, F., Gibert, D., Holschneider, M., & Saracco, G. (1997). Wavelet analysis of potential fields. Inverse Problems, 13, 165–178.

    Article  Google Scholar 

  • Oldham, C. W., & Sutherland, D. B. (1955). Orthogonal polynomials: their use in estimating the regional effect. Geophysics, 20, 295–306.

    Article  Google Scholar 

  • Perrodon, A. (1957). Étude géologique des bassins néogènes sublittoraux de l’Algérie occidentale. Service de la Carte Géologique de l’Algérie (Nouvelle Série), Bulletin N° 12. 368p.

  • Reid, A. B., Allsop, J. M., Granser, H., Millett, A. J., & Somerton, I. W. (1990). Magnetic interpretation in three dimensions using Euler déconvolution. Geophysics, 55(1), 80–91.

    Article  Google Scholar 

  • Sailhac, P., Gibert, D., & Boukerbout, H. (2009). The theory of the continuous wavelet transform in the interpretation of potential fields: a review. Geophysical Prospecting, 57(4), 517–525.

    Article  Google Scholar 

  • Savelli, C. (2002). Time-space distribution of magmatic activity in the western Mediterranean and peripheral orogens during the past 30 Ma (a stimulus to geodynamic considerations). Journal of Geodynamics, 34(1), 99–126. doi:10.1016/S0264-3707(02)00026-1.

    Article  Google Scholar 

  • Spector, A., & Grant, F. S. (1970). Statistical models for interpreting aeromagnetic data. Geophysics, 35, 293–302.

    Article  Google Scholar 

  • Tabet Helal, A., & Baghli, A. (2005). Étude hydrogeologique, hydrologique & hydrochimique, p 42-76. In. Étude hydrogeologique de la zone thermale de hammam bouhdjar. Rapport interne, commune de Hammam Bouhadjar, 119 p.

  • Thompson, D. T. (1982). EULDPH: A new technique for making computer-assisted depth estimates from magnetic data. Geophysics, 47, 31–37.

    Article  Google Scholar 

  • Yelles-Chaouche, A. K., Djellit, H., Beldjoudi, H., Bezzeghoud, M., & Buforn, E. (2004). The Ain Temouchent (Algeria) earthquake of December 22nd, 1999. Pure and Applied Geophysics, 161(3), 607–621.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by CRAAG (Centre de Recherche en Astronomie, Astrophysique et Géophyisque). The authors are grateful to Dr. A. Yelles-Chaouche (CRAAG) and A. Bougrine (CRAAG) for different discussions. We also thank the editor and the reviewers for their constructive remarks and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boualem Bouyahiaoui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouyahiaoui, B., Abtout, A., Hamai, L. et al. Structural Architecture of the Hydrothermal System from Geophysical Data in Hammam Bouhadjar Area (Northwest of Algeria). Pure Appl. Geophys. 174, 1471–1488 (2017). https://doi.org/10.1007/s00024-017-1479-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-017-1479-0

Keywords

Navigation