Skip to main content
Log in

Magnetotelluric Transfer Functions: Phase Tensor and Tipper Vector above a Simple Anisotropic Three-Dimensional Conductivity Anomaly and Implications for 3D Isotropic Inversion

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The influence of anisotropic conductivity structures on magnetotelluric transfer functions is not easy to analyse in its entire complexity. In this study, we investigate the spatial and frequency-dependent behaviour of phase tensors and tipper vectors above a 3D anisotropic conductivity anomaly. The anomaly consists of a simple cubic block embedded in a homogeneous half space. Using a 3D FD code, we compare an isotropic, 2 anisotropic models with an anisotropy factor of 10 and one anisotropic model with the anisotropy factor of 100. The results show characteristic differences between the isotropic and anisotropic cases. For the anisotropic anomalies, the tipper vectors are parallel over the entire area despite the 3D geometry of the anomalous body. The size of the tipper vectors depends on the position of the site relative to the anomaly’s boundaries and the direction of the anisotropic strike. Above the anomalous anisotropic body, the main diagonal elements of the phase tensor show the well-known split. Outside the anomaly, the phase tensor principal axis rotates according to the site position in contrast to the constant tipper direction. The 3D inversion of the forward data using an isotropic 3D code (ModEM) yields a very good fit for all cases. Whereas the inversion result matches the isotropic model, wave-like structures with high conductivity contrast occur for the anisotropic models. These structures extend far beyond the extension of the original anomalous body. Thus, the study reveals important indications of the existence of anisotropic conductivity structures for observed magnetotelluric transfer functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Caldwell, T. G., Bibby, H. M., & Brown, C. (2004). The magnetotelluric phase tensor. Geophysical Journal International, 158, 457–469.

    Article  Google Scholar 

  • Eisel, M., & Haak, V. (1997). Macro-anisotropy of the electrical conductivity of the crust: a magnetotelluric study of the German Continental Deep Drilling site (KTB). Geophysical Journal International, 136, 109–122.

    Article  Google Scholar 

  • Häuserer, M., & Junge, A. (2011). Electrical mantle anisotropy and crustal conductor: a 3-D conductivity model of the Rwenzori Region in western Uganda. Geophysical Journal International, 185, 1235–1242.

    Article  Google Scholar 

  • Heise, W., Caldwell, T. G., Bibby, H. M., & Brown, C. (2006). Anisotropy and phase splits in magnetotellurics. Physics of the Earth and Planetary Interiors, 158, 107–121.

    Article  Google Scholar 

  • Heise, W., & Pous, J. (2001). Effects of anisotropy on the two-dimensional inversion procedure. Geophysical Journal International, 147, 610–621.

    Article  Google Scholar 

  • Jones, A. G. (2012). Distortion decomposition of the magnetotelluric impedance tensors from a one-dimensional anisotropic Earth. Geophysical Journal International, 189, 2012.

    Article  Google Scholar 

  • Kelbert, A., Meqbel, N., Egbert, G. D., & Tandon, K. (2014). ModEM: A modular system for inversion of electromagnetic geophysical data. Computers & Geosciences, 66, 40–53.

    Article  Google Scholar 

  • Martí, A. (2013). The role of electrical anisotropy in magnetotelluric responses: From modelling and dimensionality analysis to inversion and interpretation. Surveys in Geophysics, 23, 179–218.

    Google Scholar 

  • Martí, A., Queralt, P., Ledo, J., & Farquharson, C. (2010). Dimensionality imprint of electrical anisotropy in magnetotelluric responses. Physics of the Earth and Planetary Interiors, 182, 139–151.

    Article  Google Scholar 

  • Martinelli, P., & Osella, A. (1997). MT forward modeling of 3-D anisotropic electrical conductivity structures using the Rayleigh-Fourier method. Journal of Geomagnetism and Geoelectricity, 49, 1499–1518.

    Article  Google Scholar 

  • Pankratov, O. V., Kuvshinov, A. V., & Avdeev, D. B. (1997). High-performance three-dimensional electromagnetic modelling using modified Neumann series. Anisotropic Earth. Journal of Geomagnetism and Geoelectricity, 49, 1541–1547.

    Article  Google Scholar 

  • Pek, J., & Verner, T. (1997). Finite-difference modelling of magnetotelluric fields in two-dimensional anisotropic media. Geophysical Journal International, 128, 505–521.

    Article  Google Scholar 

  • Wang, T., & Fang, S. (2001). 3-D electromagnetic anisotropy modeling using finite differences. Geophysics, 66(5), 1386–1398.

    Article  Google Scholar 

  • Weidelt, P. (1999). 3-D conductivity models: implications of electrical anisotropy. In M. Oristaglio & B. Spies (Eds.), Three-dimensional electromagnetics (pp. 119–137). Tulsa: SEG.

  • Weidelt, P., & Chave, A. D. (2012). The magnetotelluric response function. In A. D. Chave & A. G. Jones (Eds.), The magnetotelluric method—theory and practice (pp. 122–164). Cambridge: Cambridge University Press.

  • Weiss, C. J. (2012). The two- and three-dimensional forward problems. In A. D. Chave & A. G. Jones (Eds.), The magnetotelluric method—theory and practice (pp. 303–346). Cambridge: Cambridge University Press.

  • Weiss, C. J., & Newman, G. A. (2002). Electromagnetic induction in a generalized 3D anisotropic earth. Geophysics, 67(4), 1104–1114.

    Article  Google Scholar 

  • Weiss, C. J., & Newman, G. A. (2003). Electromagnetic induction in a generalized 3D anisotropic earth, Part 2: The LIN preconditioner. Geophysics, 68(3), 922–930.

    Article  Google Scholar 

  • Wiese, H. (1962). Geomagnetische Tiefensondierung. Teil II: Die Streichrichtung der Untergrundstrukturen des elektrischen Widerstandes, erschlossen aus geomagnetischen Variationen—Geofis. Pura et Applicata, 52, 83–103.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Löwer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Löwer, A., Junge, A. Magnetotelluric Transfer Functions: Phase Tensor and Tipper Vector above a Simple Anisotropic Three-Dimensional Conductivity Anomaly and Implications for 3D Isotropic Inversion. Pure Appl. Geophys. 174, 2089–2101 (2017). https://doi.org/10.1007/s00024-016-1444-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-016-1444-3

Keywords

Navigation