Skip to main content
Log in

Using Hilbert–Huang Transform (HHT) to Extract Infrasound Generated by the 2013 Lushan Earthquake in China

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

We applied the Hilbert–Huang transform (HHT) method to extract the infrasound generated by the 2013 Lushan earthquake and its following aftershocks in China from a nearly continuous infrasound recode made 130 km from the earthquake epicenter. An improved STA/LTA algorithm was adopted for detecting the ambient infrasonic events from the data record. A powerful processing technique for non-stationary signal, the HHT, was applied to extract the significant intrinsic mode functions (IMFs) of the infrasonic signal associated with the earthquakes. The features of the extracted IMFs, such as the dominant frequency, the maximum amplitude and the spectral entropy, were investigated using Hilbert spectral analysis. Regression analysis between the maximum amplitude in the infrasound spectra and the magnitudes of the earthquakes was carried out to verify the source of the infrasound events detected. The results demonstrated that the HHT method could successfully identify the infrasound related to the earthquakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Allen, R. (1978). Automatic earthquake recognition and timing from single traces. Bulletin of the Seismological Society of America, 68, 1521–1532.

    Google Scholar 

  • Arrowsmith, S. J., Burlacu, R., Pankow, K., Stump, B., Stead, R., Whitaker, R., & Hayward, C. (2012). A seismoacoustic study of the 2011 January 3 Circleville earthquake. Geophysical Journal International, 189, 1148–1158. doi:10.1111/j.1365-246X.2012.05420.x.

    Article  Google Scholar 

  • Chen, S. H., & Wang, E. Y. (2012). Removal of noises from electromagnetic radiation of coal or rock with EEMD-adaptive morphological filter. Journal of Coal Science and Engineering (China), 18, 330–336. doi:10.1007/s12404-012-0319-1.

    Article  Google Scholar 

  • Fu, K., Qu, J., Chai, Y., & Zou, T. (2015). HHT marginal spectrum entropy analysis for automatic seizure detection in EEG signals. Biomedical Signal Processing and Control, 18, 179–185. doi:10.1016/j.bspc.2015.01.002.

    Article  Google Scholar 

  • Green, D. N. (2005). Seismic and infrasonic signals associated with an unusual collapse event at the Soufrière Hills volcano, Montserrat. Geophysical Research Letters, 32. doi:10.1029/2004gl022265.

  • Han, P., Hattori, K., Huang, Q., Hirano, T., Ishiguro, Y., Yoshino, C., & Febriani, F. (2011). Evaluation of ULF electromagnetic phenomena associated with the 2000 Izu Islands earthquake swarm by wavelet transform analysis. Natural Hazards and Earth System Science, 11, 965–970. doi:10.5194/nhess-11-965-2011.

    Article  Google Scholar 

  • He, K., Zhang, Z., Xiao, S., & Li, X. (2013). Feature extraction of AC square wave SAW arc characteristics using improved Hilbert–Huang transformation and energy entropy. Measurement, 46, 1385–1392. doi:10.1016/j.measurement.2012.12.010.

    Article  Google Scholar 

  • Huang, N. E., et al. (1998). The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings: Mathematical, Physical and Engineering Sciences, 454, 903–995.

    Article  Google Scholar 

  • Johnson, J. B. (2007). On the relation between infrasound, seismicity, and small pyroclastic explosions at Karymsky Volcano. Journal of Geophysical Research, 112. doi:10.1029/2006jb004654.

  • Kim, T. S. (2004). Local infrasound signals from the Tokachi-Oki earthquake. Geophysical Research Letters, 31, 20. doi:10.1029/2004gl021178.

    Google Scholar 

  • Klionski, D. M., Oreshko, N. I., Geppener, V. V., & Vasiljev, A. V. (2008). Applications of empirical mode decomposition for processing nonstationary signals. Pattern Recognition and Image Analysis, 18, 390–399. doi:10.1134/s105466180803005x.

    Article  Google Scholar 

  • Kogelnig, A., Hübl, J., Suriñach, E., Vilajosana, I., & McArdell, B. W. (2014). Infrasound produced by debris flow: propagation and frequency content evolution. Natural Hazards, 70, 1713–1733. doi:10.1007/s11069-011-9741-8.

    Article  Google Scholar 

  • Krasnov, V. M., Drobzheva, Y. V., & Chum, J. (2011). Infrasonic waves in the ionosphere generated by a weak earthquake. Journal of Atmospheric and Solar-Terrestrial Physics, 73, 1930–1939. doi:10.1016/j.jastp.2011.05.002.

    Article  Google Scholar 

  • Le Pichon, A., Cansi, Y., Guilbert, J., Vergoz, J., & Brachet, N. (2005a). Analysis of infrasonic waves generated by the rupture of the Sumatra Mw = 9.0 in the Indian ocean. In Geophysical Research Abstracts, 7, 08944.

    Google Scholar 

  • Le Pichon, A., et al. (2005b). Infrasound associated with 2004–2005 large Sumatra earthquakes and tsunami. Geophysical Research Letters, 32, 19. doi:10.1029/2005gl023893.

    Article  Google Scholar 

  • Lin, L., & Chu, F. (2012). HHT-based AE characteristics of natural fatigue cracks in rotating shafts. Mechanical Systems and Signal Processing, 26, 181–189. doi:10.1016/j.ymssp.2011.07.017.

    Article  Google Scholar 

  • Markus, M. T., & Groenen, P. J. F. (1998). An introduction to the bootstrap. Psychometrika, 63, 97–101.

    Google Scholar 

  • Mikumo, T. (1968). Atmospheric pressure waves and tectonic deformation associated withe the Alaskan earthquake of March 28 1964. Journal of Geophysical Research, 73, 2009–2025.

    Article  Google Scholar 

  • Mutschlecner, J. P., & Whitaker, R. W. (2005a). Infrasound from earthquakes. Journal of Geophysical Research, 110. doi:10.1029/2004jd005067.

  • Mutschlecner, P., & Whitaker, R. (2005b). Characteristics of infrasound signals from earthquakes. The Journal of the Acoustical Society of America, 117, 2451.

    Article  Google Scholar 

  • Sabbione, J. I., & Velis, D. R. (2013). A robust method for microseismic event detection based on automatic phase pickers. Journal of Applied Geophysics, 99, 42–50. doi:10.1016/j.jappgeo.2013.07.011.

    Article  Google Scholar 

  • Scott, E. D., Hayward, C. T., Robert, F. K., Hammann, J. C., & Pierre, J. W. (2007). Single and multiple sensor identification of avalanche-generated infrasound. Cold Regions Science and Technology, 47, 159–170.

    Article  Google Scholar 

  • Shijie, Z., Xiaoyuan, S., Chengwu, L., Xiaoxuan, X., & Zhuang, X. (2011). The Analysis of Coal or Rock Electromagnetic Radiation (EMR) Signals Based on Hilbert–Huang Transform (HHT). Procedia Engineering, 26, 689–698. doi:10.1016/j.proeng.2011.11.2224.

    Article  Google Scholar 

  • ShiNan, L., Xiqiang, C., & Xinkang, H. (1977). Dynamic Spectral Analysis of Infrasound Signals by FFT. Acta Physica Sinica, 26, 232–242.

    Google Scholar 

  • Tao, Z. (2014). Short-term economic effect of the M7.0 Lushan Earthquake. Natural Hazards, 70, 1247–1261.

    Article  Google Scholar 

  • Wang, Z., Jinghua, L., Chongwang, Y., Xiaochun, L., & Changchun, L. (2009). The filtering characteristics of HHT and its application in acoustic log waveform signal processing. Applied Geophysics, 6, 8–16. doi:10.1007/s11770-009-0007-0.

    Article  Google Scholar 

  • Wang, T., Zhang, M., Yu, Q., & Zhang, H. (2012). Comparing the applications of EMD and EEMD on time–frequency analysis of seismic signal. Journal of Applied Geophysics, 83, 29–34. doi:10.1016/j.jappgeo.2012.05.002.

    Article  Google Scholar 

  • Wen, R. Z., & Ren, Y. F. (2014). Strong-Motion Observations of the Lushan Earthquake on 20 April 2013. Seismol Research Letters, 85, 1043–1055. doi:10.1785/0220140006.

    Article  Google Scholar 

  • Zhu, Y. Q., Wen, X. Z., Sun, H. P., Guo, S. S., & Zhao, Y. F. (2013a). Gravity changes before the Lushan, Sichuan, Ms = 7. 0 Earthquake of 2013. Chinese Journal of Geophysics Chinese Edition, 56, 1887–1894. doi:10.6038/Cjg20130611.

    Google Scholar 

  • Zhu, X., Xu, Q., Zhou, J., & Tang, M. (2013b). Experimental study of infrasonic signal generation during rock fracture under uniaxial compression. International Journal of Rock Mechanics and Mining Sciences, 60, 37–46. doi:10.1016/j.ijrmms.2012.12.023.

    Article  Google Scholar 

  • Zhu, X., Xu, Q., Ni, S., Tang, M., Li, Z., Deng, M., & Liu, H. (2014). Infrasonic signals associated with the aftershocks of Lushan earthquake of April 20th, 2013. Journal of Low Frequency Noise, Vibration and Active Control, 33, 113–124.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Basic Research Program (973 Program) (Grant No. 2013CB733200, 2014CB744703), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 41502293), and Project supported by the Funds for Creative Research Groups of China (Grant No. 41521002). We would like to extend special thanks to Prof. Mauri Mcsaveney for all his valuable suggestions in greatly improving the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Xu, Q. & Liu, H.X. Using Hilbert–Huang Transform (HHT) to Extract Infrasound Generated by the 2013 Lushan Earthquake in China. Pure Appl. Geophys. 174, 865–874 (2017). https://doi.org/10.1007/s00024-016-1438-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-016-1438-1

Keywords

Navigation