Abstract
We use historical and recent major earthquakes and GPS geodetic data to compute seismic strain rate, geodetic slip deficit, static stress drop, the parameters of the magnitude–frequency distribution and geodetic strain rate in the Iranian Plateau to identify seismically mature fault segments and regions. Our analysis suggests that 11 fault segments are in the mature stage of the earthquake cycle, with the possibility of generating major earthquakes. These faults primarily are located in the north and the east of Iran. Four seismically mature regions in southern Iran with the potential for damaging strong earthquakes are also identified. We also delineate four additional fault segments in Iran that can generate major earthquakes without robust clues to their maturity.The most important fault segment in this study is the strike-slip system near the capital city of Tehran, with the potential to cause more than one million fatalities.
This is a preview of subscription content, access via your institution.














References
Adeli, H. (1982). The Sirch (Kerman, Iran) Earthquake of 28 July 1981—A field investigation. Bulletin of the Seismological Society of America, 72, 841–861.
Ahmadi, G., Mostaghel, N., & Nowroozi, A. A. (1989). Probabilistic seismic risk for various peak ground accelerations. Iranian Journal of Science and Technology, 13, 115–156.
Allmann, B. P., & Shearer, P. M. (2009). Global variations of stress drop for moderate to large earthquakes. Journal of Geophysical Research, 114(B1), B01310.
Allmendinger, R. W., Reilinger, R., & Loveless, J. (2007). Strain and rotation rate from GPS in Tibet, Anatolia, and the Altiplano, Tectonics, 26, TC3013. doi:10.1029/2006TC002.030.
Altamimi, Z., Métivier, L., & Collilieux, X. (2012). ITRF2008 plate motion model. Journal of Geophysical Research. doi:10.1029/2011JB008930.
Ambraseys, N., & Melville, C. (1982). A History of Persian Earthquakes, 219 pp., Cambridge University Press, Cambridge.
Ambraseys, N. N. (1977). The Seismicity of Kuhistan. Iran, The Geographical Journal, 143. doi:10.2307/1795,872.
Ambraseys, N. N. (1997). The Krasnovodsk (Turkmenistan) earthquake of 8 July 1895. Journal of Earthquake Engineering, 01(02), 293–317. doi:10.1142/S1363246997000131.
Amitrano, D. (2003). Brittle-ductile transition and associated seismicity: Experimental and numerical studies and relationship with the b value. Journal of Geophysical Research, 108(B1).
Amorése, D. (2007). Applying a change-point detection method on frequency-magnitude distributions. Bulletin of the Seismological Society of America, 97(5), 1742–1749. doi:10.1785/0120060181.
Authemayou, C., Bellier, O., Chardon, D., Benedetti, L., Malekzade, Z., Claude, C., et al. (2009). Quaternary slip-rates of the Kazerun and the Main Recent Faults: active strike-slip partitioning in the Zagros fold-and-thrust belt. Geophysical Journal International, 178(1), 524–540. doi:10.1111/j.1365-246X.2009.04191.x.
Bahroudi, A., & Koyi, H. (2003). Effect of spatial distribution of Hormuz salt on deformation style in the Zagros fold and thrust belt: an analogue modelling approach. Journal of the Geological Society, 160(5), 719–733.
Bak, P., & Tang, C. (1989). Earthquakes as a self-organized critical phenomenon. Journal of Geophysical Research, 94(15), 15635–15637.
Berberian, M. (1976). Contribution to the Seismotectonics of Iran, Part II, Report 39, Tech. rep., Geol. Surv. Iran.
Berberian, M. (1995). Master “blind” thrust faults hidden under the Zagros folds: active basement tectonics and surface morphotectonics. Tectonophysics, 241(3), 193–224.
Berberian, M., & King, G. C. P. (1981). Towards a plaeogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences, 18, 210–265.
Berberian, M., & Walker, R. (2010). seismotectonics, coseismic and geomorphic displacements, and historic earthquakes of the western ’High-Alborz’, Iran. Geophysical Journal International, 182(3), 1577–1602. doi:10.1111/j.1365-246X.2010.04705.x.
Berberian, M., Asudeh, I., & Arshadi, S. (1979). Surface rupture and mechanism of the Bob-Tangol (southeastern Iran) earthquake of 19 December 1977. Earth and Planetary Science Letters, 42(3), 456–462. doi:10.1016/0012-821X(79)90055-4.
Berberian, M., Qorashi, M., Jackson, J., Priestley, K., & Wallace, T. (1992). The Rudbar-Tarom earthquake of 20 June 1990 in NW Persia: Preliminary field and seismological observations, and its tectonic significance. Bulletin of the Seismological Society of America, 82(4), 1726–1755.
Bilham, R. (2009). The seismic future of cities. Bulletin of Earthquake Engineering. doi:10.1007/s10518-009-9147-0.
Brown, L., Wang, K., & Sun, T. (2015). Static stress drop in the Mw 9 Tohoku-oki earthquake: Heterogeneous distribution and low average value, Geophysical Research Letters, 42(24), 10595–10600. doi:10.1002/2015GL066361.
Brune, J. N. (1970). Tectonic stress and the spectra of seismic shear waves from earthquakes. Journal of Geophysical Research, 75(26), 4997–5009.
Cardozo, N., & Allemindigner, R. W. (2009). SSPX: A program to compute strain from displacement/velocity data. Computational GeoSciences, 35, 1343–1357.
Djamour, Y., Vernant, P., Bayer, R., Nankali, H. R., Ritz, J.-F., Hinderer, J., et al. (2010). GPS and gravity constraints on continental deformation in the Alborz mountain range, Iran. Geophysical Journal International, 183(3), 1287–1301.
Dogan, B., & Karakas, A. (2013). Geometry of co-seismic surface ruptures and tectonic meaning of the 23 October 2011 Mw 7.1 Van earthquake (East Anatolian Region, Turkey). Journal of Structural Geology, 46, 99–114. doi:10.1016/j.jsg.2012.10.001.
Dziewonski, A. M., & Anderson, D. L. (1981). Preliminary reference Earth model. Physics of the Earth and Planetary Interiors, 25(4), 297–356.
Ekströem, G., Nettles, M., & Dziewonski, A. M. (2012). The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes. Physics of the Earth and Planetary Interiors, 200, 1–9. doi:10.1016/j.pepi.2012.04.002.
Engdahl, E. R., Jackson, J. A., Myers, S. C., Bergman, E. A., & Priestley, K. (2006). Relocation and assessment of seismicity in the Iran region. Geophysical Journal International, 167(2), 761–778. doi:10.1111/j.1365-246X.2006.03127.x.
Falcon, N. L. (1974). Southern Iran: Zagros mountains, in Mesozoic-Cenozoic Orogenic Belts. Gological Society of London Special Publication, 4, 199–211.
Frohlich, C. (2006). Deep Earthquakes. Cambridge, United Kingdom, Cambridge University Press, p. 592.
Gao, L., & Wallace, T. C. (1995). The 1990 Rudbar-Tarom Iranian earthquake sequence: Evidence for slip partitioning. Journal of Geophysical Research, 100(B8), 15317–15332.
Gardner, J. K., & Knopoff, L. (1974). Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian? Bulletin of the Seismological Society of America, 64(5), 1363–1367.
Guest, B., Axen, G. J., Lam, P. S., & Hassanzadeh, J. (2006). Late Cenozoic shortening in the west-central Alborz Mountains, northern Iran, by combined conjugate strike-slip and thin-skinned deformation. Geosphere, 2(1), 35–52.
Gutenberg, B., & Richter, C. F. (1944). Frequency of earthquakes in California. Bulletin of the Seismological Society of America, 34(4), 185–188.
Hassani, B., Zafarani, H., Farjoodi, J., & Ansari, A. (2011). Estimation of site amplification, attenuation and source spectra of S-waves in the East-Central Iran. Soil Dynamics and Earthquake Engineering, 31(10), 1397–1413.
Heimpel, M. (1997). Critical behaviour and the evolution of fault strength during earthquake cycles. Nature, 388(6645), 865–868.
Herring, T. A., King, R. W., & McCulsky, S. C. (2010). GLOBK reference manual, global Kalman filter VLBI and GPS analysis program, Release 10.4, Department of Earth, Atmospheric, and Planetary Sciences, MIT.
Hollingsworth, J., Nazari, H., Ritz, J.-F., Salamati, R., Talebian, M., & Bahroudi, A., et al. (2010). Active tectonics of the east Alborz mountains, NE Iran: Rupture of the left-lateral Astaneh fault system during the great 856 A.D. Qumis earthquake. Journal of Geophysical Research. doi:10.1029/2009JB007185, b12313.
Hu, F., Zhang, Z., & Chen, X. (2016). Investigation of earthquake jump distance for strike-slip step overs based on 3D dynamic rupture simulations in an elastic half-space, Journal of Geophysical Research, 121(2), 994–1006. doi:10.1002/2015JB012696.
Jackson, J., Haines, J., & Holt, W. (1995). The accomodation of Arabia-Eurasia plate convergence in Iran. Journal of Geophysical Research, 100, 15205–15219. doi:10.1029/95JB01,294.
Kamer, Y., & Hiemer, S. (2015). Data-driven spatial b value estimation with applications to California seismicity: To b or not to b. Journal of Geophysical Research, 120(7), 5191–5214.
Kanamori, H., & Allen, C. R. (2013). Earthquake Repeat Time and Average Stress Drop. American Geophysical Union, pp. 227–235. doi:10.1029/GM037p0227.
Kanamori, H., & Anderson, D. L. (1975). Theoretical basis of some empirical relations in seismology. Bulletin of the Seismological Society of America, 65(5), 1073–1095.
Khodaverdian, A., Zafarani, H., & Rahimian, M. (2015). Long term fault slip rates, distributed deformation rates and forecast of seismicity in the Iranian Plateau. Tectonics, 34(10), 2190–2220.
Knopoff, L., & Gardner, J. K. (1972). Higher seismic activity during local night on the raw worldwide earthquake catalogue. Geophysical Journal of the Royal Astronomical Society, 28(3), 311–313.
Kondorskaya, N., & Shebalin, N. (2010). New catalog of strong earthquakes in the U.S.S.R. from ancient times through 1977, Tech. rep., NOAA, National Geophysical Data Center, Boulder, Colorado, USA.
Kostrov, B. V., & Das, S. (1988). Principles of Earthquakes Source Mechanics. Cambridge University Press, Cambridge, p .286.
Lay, T., & Wallace, T. (1995). Modern Global Seismology. International Geophysics. California, United States, Elsevier Science, p 521.
Lengliné, O., Lamourette, L., Vivin, L., Cuenot, N., & Schmittbuhl, J. (2014). Fluid-induced earthquakes with variable stress drop. Journal of Geophysical Research, 119(12), 8900–8913. doi:10.1002/2014JB011282.
McGill, S. F., Spinler, J. C., McGill, J. D., Bennett, R. A., Floyd, M. A., Fryxell, J. E., et al. (2015). Kinematic modeling of fault slip rates using new geodetic velocities from a transect across the Pacific-North America plate boundary through the San Bernardino Mountains, California. Journal of Geophysical Research, 120(4), 2772–2793.
Meade, B. J., & Hager, B. H. (2005). Block models of crustal motion in southern California constrained by GPS measurements. Journal of Geophysical Research. 110(B3), B03403.
Masson, F., Chéry, J., Hatzfeld, D., Martinod, J., Vernant, P., Tavakoli, F., et al. (2005). Seismic versus aseismic deformation in Iran inferred from earthquakes and geodetic data. Geophysical Journal International, 160(1), 217–226.
Mirzaei, N., Gao, M., & Chen, Y. (1997). Seismicity in major seismotectonic proviences of Iran. Earthquake Research in China, 11, 351–361.
Mirzaei, N., Gao, M., & Chen, Y. (1999). Delineation of potential seismic sources for seismic zoning of Iran. Journal of Seismology, 3, 17–30.
Mousavi, Z., Walpersdorf, A., Walker, R., Tavakoli, F., Pathier, E., Nankali, H., et al. (2013). Global Positioning System constraints on the active tectonics of NE Iran and the South Caspian region, Earth and Planet. Science Letters, 377, 287–298.
Mullick, M., Riguzzi, F., & Mukhopadhyay, D. (2009). Estimates of motion and strain rates across active faults in the frontal part of eastern Himalayas in North Bengal from GPS measurements. Terra Nova, 21, 410–415.
Nakamura, T., Suzuki, S., Sadeghi, H., Fatemi Aghda, S. M., Matsushima, T., Ito, Y., Hosseini, S. K., Gandomi, A. J., & Maleki, M. (2005), Source fault structure of the 2003 Bam earthquake, southeastern Iran, inferred from the aftershock distribution and its relation to the heavily damaged area: Existence of the Arg-e-Bam fault proposed. Geophysical Research Letters. doi:10.1029/2005GL022631.
National Geophysical Data Center, NOAA (2016), National Geophysical Data Center / World Data Service (NGDC/WDS): Global Significant Earthquake Database. http://www.ngdc.noaa.gov/nndc/struts/form?t=101650&s=1&d=1. doi:10.7289/V5TD9V7K, online; Accessed Jan 2016.
Nazari, H., Ritz, J.-F., Salamati, R., Shafei, A., Ghassemi, A., Michelot, J.-L., et al. (2009). Morphological and palaeoseismological analysis along the Taleghan fault (Central Alborz, Iran). Geophysical Journal International, 178(2), 1028–1041. doi:10.1111/j.1365-246X.2009.04173.x.
Nilforoushan, F., Masson, F., Vernant, P., Vigny, C., Martinod, J., Abbassi, M., et al. (2003). GPS network monitors the Arabia-Eurasia collision deformation in Iran. Journal of Geodesy, 77(7–8), 411–422.
Nissen, E., Jackson, J., Jahani, S., & Tatar, M. (2014). Zagros “phantom earthquakes” reassessed—The interplay of seismicity and deep salt flow in the Simply Folded Belt? Journal of Geophysical Research, 119(4), 3561–3583.
Nowroozi, A. A., & Ahmadi, G. (1986). Analysis of earthquake risk in Iran based on seismotetonic proviences. Tectonophysics, 122, 89–114.
Nur, A., & Mavko, G. (1974). Postseismic viscoelastic rebound. Science, 183(4121), 204–206.
Okal, E. A., & Romanowicz, B. A. (1994). On the variation of b-values with earthquake size. Physics of the Earth and Planetary Interiors, 87(1–2), 55–76. doi:10.1016/0031-9201(94)90021-3.
Ottemöller, L., Voss, P., & Havskov, J. (2013). SEISAN earthquake analysis software for Windows. Linux and MacOSX: Solaris.
Riznichenko, Y. V. (1965). Seismic rock flow, in dynamics of the Earth’s crust. Moscow: Nauka.
Savage, J., & Prescott, W. (1978). Asthenosphere readjustment and the earthquake cycle. Journal of Geophysical Research, 83(B7), 3369–3376.
Scholz, C. H. (2015). On the stress dependence of the earthquake b value. Geophysical Research Letters, 42(5), 1399–1402. doi:10.1002/2014GL062863.
Schorlemmer, D., & Wiemer, S. (2005). Earth science: Microseismicity data forecast rupture area. Nature, 434(7037), 1086–1086.
Shabanian, E., Bellier, O., Siame, L., Abbassi, M. R., Bourlés, D., & Braucher, R., et al. (2012). The Binalud Mountains: A key piece for the geodynamic puzzle of NE Iran. Tectonics, 31(6), doi:10.1029/2012TC003183, tC6003.
Sorbi, M. R., Nilfouroushan, F., & Zamani, A. (2012). Seismicity patterns associated with the September 10th, 2008 Qeshm earthquake, South Iran. International Journal of Earth Sciences, 101(8), 2215–2223.
Sugan, M., Kato, A., Miyake, H., Nakagawa, S., & Vuan, A. (2014). The preparatory phase of the 2009 Mw 6.3 L’Aquila earthquake by improving the detection capability of low-magnitude foreshocks. Geophysical Research Letters, 41(17), 6137–6144.
Talebian, M., Fielding, E. J., Funning, G. J., Ghorashi, M., Jackson, J., & Nazari, H., et al. (2004). The 2003 Bam (Iran) earthquake: Rupture of a blind strike-slip fault. Geophysical Research Letters. doi:10.1029/2004GL020058.
Tatar, M., & Hatzfeld, D. (2009). Microseismic evidence of slip partitioning for the Rudbar-Tarom earthquake (Ms 7.7) of 1990 June. Geophysical Journal International, 176(2), 529–541.
Tavakoli, B., & Ghafory Ashtiany, M. (1999). Seismic hazard assessment of Iran. Annals of Geophysics, 42, 1013–1021.
Tavakoli, F., Walpersdorf, A., Authemayou, C., Nankali, H., Hatzfeld, D., Tatar, M., et al. (2008). Distribution of the right-lateral strike-slip motion from the Main Recent Fault to the Kazerun Fault System (Zagros, Iran): Evidence from present-day GPS velocities. Earth and Planetary Science Letters, 275(3–4), 342–347. doi:10.1016/j.epsl.2008.08.030.
Unglert, K., Savage, M. K., Fournier, N., Ohkura, T., & Abe, Y. (2011). Shear wave splitting, vP/vS, and GPS during a time of enhanced activity at Aso caldera, Kyushu. Journal of Geophysical Research, 116(B11). doi:10.1029/2011JB008520.
Vallée, M. (2013). Source time function properties indicate a strain drop independent of earthquake depth and magnitude. Nature Communications, 4, 2606.
Walters, R., Parsons, B., & Wright, T. (2014). Constraining crustal velocity fields with InSAR for Eastern Turkey: Limits to the block-like behavior of Eastern Anatolia. Journal of Geophysical Research, 119(6), 5215–5234.
Walpersdorf, A., Manighetti, I., Mousavi, Z., Tavakoli, F., Vergnolle, M., Jadidi, A., et al. (2014). Present day kinematics and fault slip rates in eastern Iran derived from 11 years of GPS data. Journal of Geophysical Research, 119, 1359–1383.
Wiemer, S., & Schorlemmer, D. (2007). ALM: An asperity-based likelihood model for California. Seismological Research Letters, 78(1), 134–140.
Wiemer, S., & Wyss, M. (2002). Mapping spatial variability of the frequency-magnitude distribution of earthquakes. Advances in Geophysics, 45, 259–302.
Wyss, M., Liang, B., Tanigawa, W., & Wu, X. (1992). Comparison of orientations of stress and strain tensors based on fault plane solutions in Kaoiki, Hawaii. Journal of Geophysical Research, 97(B4), 4769–4790.
Wyss, M., Schorlemmer, D., & Wiemer, S. (2000). Mapping asperities by minima of local recurrence time: San Jacinto-Elsinore fault zones. Journal of Geophysical Research, 105(B4), 7829–7844.
Yamasaki, T., Wright, T. J., & Houseman, G. A. (2014). Weak ductile shear zone beneath a major strike-slip fault: Inferences from earthquake cycle model constrained by geodetic observations of the western North Anatolian Fault Zone. Journal of Geophysical Research, 119(4), 3678–3699.
Zafarani, H., & Hassani, B. (2013). Site response and source spectra of S waves in the Zagros region, Iran. Journal of Seismology, 17(2), 645–666.
Zafarani, H., Hassani, B., & Ansari, A. (2012). Estimation of earthquake parameters in the Alborz seismic zone, Iran using generalized inversion method. Soil Dynamics and Earthquake Engineering, 42, 197–218.
Zarifi, Z., Nilfouroushan, F., & Raeesi, M. (2014). Crustal stress map of Iran: Insight from seismic and geodetic computations. Pure and Applied Geophysics, 171, 1219–1236. doi:10.1007/s00024-013-0711-9.
Zielke, O., & Arrowsmith, J. (2008). Depth variation of coseismic stress drop explains bimodal earthquake magnitude-frequency distribution. Geophysical Research Letters, 35(24), L24301.
Author information
Authors and Affiliations
Corresponding author
Appendix
Rights and permissions
About this article
Cite this article
Raeesi, M., Zarifi, Z., Nilfouroushan, F. et al. Quantitative Analysis of Seismicity in Iran. Pure Appl. Geophys. 174, 793–833 (2017). https://doi.org/10.1007/s00024-016-1435-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00024-016-1435-4