Skip to main content
Log in

Surface Wave Tomography with Spatially Varying Smoothing Based on Continuous Model Regionalization

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Surface wave tomography based on continuous regionalization of model parameters is widely used to invert for 2-D phase or group velocity maps. An inevitable problem is that the distribution of ray paths is far from homogeneous due to the spatially uneven distribution of stations and seismic events, which often affects the spatial resolution of the tomographic model. We present an improved tomographic method with a spatially varying smoothing scheme that is based on the continuous regionalization approach. The smoothness of the inverted model is constrained by the Gaussian a priori model covariance function with spatially varying correlation lengths based on ray path density. In addition, a two-step inversion procedure is used to suppress the effects of data outliers on tomographic models. Both synthetic and real data are used to evaluate this newly developed tomographic algorithm. In the synthetic tests, when the contrived model has different scales of anomalies but with uneven ray path distribution, we compare the performance of our spatially varying smoothing method with the traditional inversion method, and show that the new method is capable of improving the recovery in regions of dense ray sampling. For real data applications, the resulting phase velocity maps of Rayleigh waves in SE Tibet produced using the spatially varying smoothing method show similar features to the results with the traditional method. However, the new results contain more detailed structures and appears to better resolve the amplitude of anomalies. From both synthetic and real data tests we demonstrate that our new approach is useful to achieve spatially varying resolution when used in regions with heterogeneous ray path distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abers, G. A., & Roecker, S. W. (1991). Deep structure of an arc-continent collision: Earthquake relocation and inversion for upper mantle P and S wave velocities beneath Papua New Guinea. Journal Geophysical Research, 96(B4), 6379–6401.

    Article  Google Scholar 

  • An, M., Feng, M., & Zhao, Y. (2009). Destruction of lithosphere within the north China craton inferred from surface wave tomography. Geochemistry, Geophysics, Geosystems, 10(8), Q08016.

    Article  Google Scholar 

  • Bao, X., Sun, X., Xu, M., Eaton, D. W., Song, X., Wang, L., et al. (2015). Two crustal low-velocity channels beneath SE Tibet revealed by joint inversion of Rayleigh wave dispersion and receiver functions, Earth planet. Science Letters, 415, 16–24.

    Google Scholar 

  • Barmin, M. P., Ritzwoller, M. H., & Levshin, A. L. (2001). A fast and reliable method for surface wave tomography. Pure and Applied Geophysics, 158, 1351–1375.

    Article  Google Scholar 

  • Bodin, T., & Sambridge, M. (2009). Seismic tomography with the reversible jump algorithm. Geophysical Journal International, 178(3), 1411–1436.

    Article  Google Scholar 

  • Böhm, G., Galuppo, P., & Vesnaver, A. (2000). 3D adaptive tomography using Delaunay triangles and Voronoi polygons. Geophysical Prospecting, 48(4), 723–744.

    Article  Google Scholar 

  • Boschi, L., & Ekström, G. (2002). New images of the Earth’s upper mantle from measurements of surface wave phase velocity anomalies. Journal of Geophysical Research: Solid Earth (1978–2012), 107(B4), 2059.

    Article  Google Scholar 

  • Chiao, L. Y., & Kuo, B. Y. (2001). Multiscale seismic tomography. Geophysical Journal International, 145(2), 517–527.

    Article  Google Scholar 

  • Chiao, L. Y., & Liang, W. T. (2003). Multiresolution parameterization for geophysical inverse problems. Geophysics, 68(1), 199–209.

    Article  Google Scholar 

  • Debayle, E., Kennett, B., & Priestley, K. (2005). Global azimuthal seismic anisotropy and the unique plate-motion deformation of Australia. Nature, 433(7025), 509–512.

    Article  Google Scholar 

  • Debayle, E., & Sambridge, M. (2004). Inversion of massive surface wave data sets: Model construction and resolution assessment. Journal Geophysical Research, 109, B02316.

    Article  Google Scholar 

  • Delost, M., Virieux, J., & Operto, S. (2008). First arrival traveltime tomography using second generation wavelets. Geophysical Prospecting, 56(4), 505–526.

    Article  Google Scholar 

  • Ditmar, P. G., & Yanovskaya, T. B. (1987). Generalization of the Backus–Gilbert method for estimation of the horizontal variations of surface wave velocity. Izvestiya of the Academy of Sciences of the USSR Physics of the Solid Earth, English Translation, 23(6), 470–477.

    Google Scholar 

  • Ekström, G., Tromp, J., & Larson, E. W. (1997). Measurements and global models of surface wave propagation. Journal of Geophysical Research: Solid Earth (1978–2012), 102(B4), 8137–8157.

    Article  Google Scholar 

  • Fang, H., Yao, H., Zhang, H., Huang, Y. C., & van der Hilst, R. D. (2015). Direct inversion of surface wave dispersion for three-dimensional shallow crustal structure based on ray tracing: methodology and application. Geophysical Journal International, 201(3), 1251–1263.

    Article  Google Scholar 

  • Fang, H., & Zhang, H. (2014). Wavelet-based double-difference seismic tomography with sparsity regularization. Geophysical Journal International, 199(2), 944–955.

    Article  Google Scholar 

  • Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2004). Bayesian data analysis. Boca Raton: Chapman & Hall/CRC.

    Google Scholar 

  • Hawkins, R., & Sambridge, M. (2015). Geophysical imaging using trans-dimensional trees. Geophysical Journal International, 203(2), 972–1000.

    Article  Google Scholar 

  • Hung, S. H., Chen, W. P., & Chiao, L. Y. (2011). A data-adaptive, multiscale approach of finite-frequency, traveltime tomography with special reference to P and S wave data from central Tibet. Journal of Geophysical Research: Solid Earth (1978–2012), 116(B6), B06307. doi:10.1029/2010JB008190.

    Article  Google Scholar 

  • Lévêque, J. J., Rivera, L., & Wittlinger, G. (1993). On the use of the checker-board test to assess the resolution of tomographic inversions. Geophysical Journal International, 115, 313–318.

    Article  Google Scholar 

  • Levshin, A. L., Yanovskaya, T. B., Lander, A. V., Bukchin, B. G., Barmin, M. P., Ratnikova, L. I., et al. (1989). Seismic surface waves in a laterally inhomogeneous Earth. Norwell: Kluwer Academic.

    Google Scholar 

  • Lin, F.-C., Moschetti, M. P., & Ritzwoller, M. H. (2008). Surface wave tomography of the western United States from ambient seismic noise: Rayleigh and Love wave phase velocity maps. Geophysical Journal International, 173(1), 281–298.

    Article  Google Scholar 

  • Lin, F.-C., & Ritzwoller, M. H. (2011). Helmholtz surface wave tomography for isotropic and azimuthally anisotropic structure. Geophysical Journal International, 186(3), 1104–1120.

    Article  Google Scholar 

  • Lin, F.-C., Ritzwoller, M. H., & Snieder, R. (2009). Eikonal tomography: Surface wave tomography by phase front tracking across a regional broadband seismic array. Geophysical Journal International, 177(3), 1091–1110.

    Article  Google Scholar 

  • Liu, Q. Y., van der Hilst, R. D., Li, Y., Yao, H. J., Chen, J. H., Guo, B., et al. (2014). Eastward expansion of the Tibetan Plateau by crustal flow and strain partitioning across faults. Nature Geoscience, 7(5), 361–365.

    Article  Google Scholar 

  • Loris, I., Nolet, G., Daubechies, I., & Dahlen, F. A. (2007). Tomographic inversion using 1-norm regularization of wavelet coefficients. Geophysical Journal International, 170(1), 359–370.

    Article  Google Scholar 

  • Montagner, J.-P. (1986). Regional three-dimensional structures using long period surface waves. Annales Geophysicae, 4, 283–294.

    Google Scholar 

  • Montagner, J.-P., & Tanimoto, T. (1991). Global upper mantle tomography of seismic velocities and anisotropies. Journal of Geophysical Research: Solid Earth (1978–2012), 96(B12), 20337–20351.

    Article  Google Scholar 

  • Pollitz, F., & Snoke, J. A. (2010). Rayleigh-wave phase-velocity maps and three-dimensional shear velocity structure of the western US from local non-plane surface wave tomography. Geophysical Journal International, 180(3), 1153–1169.

    Article  Google Scholar 

  • Rawlinson, N., & Spakman, W. (2016). On the use of sensitivity tests in seismic tomography. Geophysical Journal International, 205(2), 1221–1243.

    Article  Google Scholar 

  • Ritzwoller, M. H., & Levshin, A. L. (1998). Eurasian surface wave tomography: Group velocities. Journal of Geophysical Research: Solid Earth (1978–2012), 103(B3), 4839–4878.

    Article  Google Scholar 

  • Ritzwoller, M. H., Shapiro, N. M., Barmin, M. P., & Levshin, A. L. (2002). Global surface wave diffraction tomography. Journal of Geophysical Research: Solid Earth (1978–2012), 107(B12), ESE-4.

    Article  Google Scholar 

  • Ritzwoller, M. H., Shapiro, N. M., Levshin, A. L., & Leahy, G. M. (2001). Crustal and upper mantle structure beneath Antarctica and surrounding oceans. Journal of Geophysical Research: Solid Earth (1978–2012), 106(B12), 30645–30670.

    Article  Google Scholar 

  • Sambridge, M., & Gumundsson, Ó. (1998). Tomographic systems of equations with irregular cells. Journal Geophysical Research, 103(B1), 773–781.

    Article  Google Scholar 

  • Saygin, E., Cummins, P. R., Cipta, A., Hawkins, R., Pandhu, R., Murjaya, J., et al. (2016). Imaging architecture of the Jakarta Basin, Indonesia with transdimensional inversion of seismic noise. Geophysical Journal International, 204(2), 918–931.

    Article  Google Scholar 

  • Shapiro, N. M., & Ritzwoller, M. H. (2002). Monte-Carlo inversion for a global shear-velocity model of the crust and upper mantle. Geophysical Journal International, 151(1), 88–105.

    Article  Google Scholar 

  • Shapiro, N. M., Ritzwoller, M. H., Molnar, P., & Levin, V. (2004). Thinning and flow of Tibetan crust constrained by seismic anisotropy. Science, 305(5681), 233–236.

    Article  Google Scholar 

  • Shen, Z.-K., Lü, J., Wang, M., & Bürgmann, R. (2005). Contemporary crustal deformation around the southeast borderland of the Tibetan plateau. Journal Geophysical Research, 106(B4), 6793–6816.

    Article  Google Scholar 

  • Silveira, G., & Stutzmann, E. (2002). Anisotropic tomography of the Atlantic Ocean. Physics of the Earth and Planetary Interiors, 132(4), 237–248.

    Article  Google Scholar 

  • Simons, F. J., Loris, I., Nolet, G., Daubechies, I. C., Voronin, S., Judd, J. S., et al. (2011). Solving or resolving global tomographic models with spherical wavelets, and the scale and sparsity of seismic heterogeneity. Geophysical Journal International, 187(2), 969–988.

    Article  Google Scholar 

  • Simons, F. J., van der Hilst, R. D., Montagner, J. P., & Zielhuis, A. (2002). Multimode Rayleigh wave inversion for heterogeneity and azimuthal anisotropy of the Australian upper mantle. Geophysical Journal International, 151, 738–754.

    Article  Google Scholar 

  • Spakman, W., & Bijwaard, H. (2001). Optimization of cell parameterizations for tomographic inverse problems. Pure and Applied Geophysics, 158(8), 1401–1423.

    Article  Google Scholar 

  • Spetzler, J., & Snieder, R. (2001). The effect of small scale heterogeneity on the arrival time of waves. Geophysical Journal International, 145(3), 786–796.

    Article  Google Scholar 

  • Tarantola, A., & Nercessian, A. (1984). Three-dimensional inversion without blocks. Geophysical Journal of the Royal Astronomical Society, 76, 299–306.

    Article  Google Scholar 

  • Tarantola, A., & Valette, B. (1982). Generalized nonlinear inverse problem solved using the least squares criterion. Reviews of Geophysics and Space Physics, 20(2), 219–232.

    Article  Google Scholar 

  • Wang, E., & Burchfiel, B. C. (2000). Late Cenozoic to Holocene deformation in southwestern Sichuan and adjacent Yunnan, China, and its role in formation of the southeastern part of the Tibetan plateau. Geological Society of America Bulletin, 112(3), 413–423.

    Article  Google Scholar 

  • Wang, E., Burchfiel, B. C., Royden, L. H., Chen, L., Chen, J., Li, W., et al. (1998). Late Cenozoic Xianshuihe-Xiaojiang, Red River and Dali fault systems of southwestern Sichuan and central Yunnan, China. Special Papers - Geological Society of America, 327, 1–108.

    Google Scholar 

  • Yang, Y., Ritzwoller, M. H., Levshin, A. L., & Shapiro, N. M. (2007). Ambient noise Rayleigh wave tomography across Europe. Geophysical Journal International, 168(1), 259–274.

    Article  Google Scholar 

  • Yang, Y., Ritzwoller, M. H., Zheng, Y., Shen, W., Levshin, A. L., & Xie, Z. (2012) A synoptic view of the distribution and connectivity of the mid-crustal low velocity zone beneath Tibet. Journal of Geophysical Research: Solid Earth (1978–2012), 117(B4), B04303. doi:10.1029/2011JB008810.

    Google Scholar 

  • Yanovskaya, T. B., & Ditmar, P. G. (1990). Smoothness criteria in surface wave tomography. Geophysical Journal International, 102(1), 63–72.

    Article  Google Scholar 

  • Yao, H., Beghein, C., & Van Der Hilst, R. D. (2008). Surface wave array tomography in SE Tibet from ambient seismic noise and two-station analysis—II. Crustal and upper-mantle structure. Geophysical Journal International, 173(1), 205–219.

    Article  Google Scholar 

  • Yao, H., van der Hilst, R. D., & Montagner, J.-P. (2010). Heterogeneity and anisotropy of the lithosphere of SE Tibet from surface wave array tomography. Journal of Geophysical Research: Solid Earth (1978–2012), 115(B12), B12307. doi:10.1029/2009JB007142.

    Article  Google Scholar 

  • Yao, H., Xu, G., Zhu, L., & Xiao, X. (2005). Mantle structure from interstation Rayleigh wave dispersion and its tectonic implication in western China and neighboring regions. Physics of the Earth and Planetary Interiors, 148, 39–54.

    Article  Google Scholar 

  • Yoshizawa, K., & Kennett, B. (2004). Multimode surface wave tomography for the Australian region using a three-stage approach incorporating finite frequency effects. Journal of Geophysical Research: Solid Earth (1978–2012), 109(B2), B02310. doi:10.1029/2002JB002254.

    Article  Google Scholar 

  • Zhang, H., & Thurber, C. H. (2005). Adaptive mesh seismic tomography based on tetrahedral and Voronoi diagrams: Application to Parkfield, California. Journal Geophysical Research, 110(B4), B04303. doi:10.1029/2004JB003186.

    Google Scholar 

Download references

Acknowledgements

We appreciate three anonymous reviewers for their constructive comments, which help to significantly improve the original manuscript. Most figures are made from the Generic Mapping Tools (GMT) (http://gmt.soest.hawaii.edu/). This study is supported by National Natural Science Foundation of China (41574034, 41222028), and the Fundamental Research Funds for the Central Universities in China (WK2080000053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huajian Yao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Yao, H. Surface Wave Tomography with Spatially Varying Smoothing Based on Continuous Model Regionalization. Pure Appl. Geophys. 174, 937–953 (2017). https://doi.org/10.1007/s00024-016-1434-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-016-1434-5

Keywords

Navigation