Skip to main content

Probabilistic Hazard of Tsunamis Generated by Submarine Landslides in the Cook Strait Canyon (New Zealand)

Abstract

Cook Strait Canyon is a submarine canyon that lies within ten kilometres of Wellington, the capital city of New Zealand. The canyon walls are covered with scars from previous landslides which could have caused local tsunamis. Palaeotsunami evidence also points to past tsunamis in the Wellington region. Furthermore, the canyon’s location in Cook Strait means that there is inhabited land in the path of both forward- and backward-propagating waves. Tsunamis induced by these submarine landslides pose hazard to coastal communities and infrastructure but major events are very uncommon and the historical record is not extensive enough to quantify this hazard. The combination of infrequent but potentially very consequential events makes realistic assessment of the hazard challenging. However, information on both magnitude and frequency is very important for land use planning and civil defence purposes. We use a multidisciplinary approach bringing together geological information with modelling to construct a Probabilistic Tsunami Hazard Assessment of submarine landslide-generated tsunami. Although there are many simplifying assumptions used in this assessment, it suggests that the Cook Strait open coast is exposed to considerable hazard due to submarine landslide-generated tsunamis. We emphasise the uncertainties involved and present opportunities for future research.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  • Abadie, S. M., Harris, J. C., Grilli, S. T., & Fabre, R. (2012). Numerical modeling of tsunami waves generated by the flank collapse of the Cumbre Vieja Volcano (La Palma, Canary Islands): Tsunami source and near field effects. Journal of Geophysical Research-Oceans, 117, C05030. doi:10.1029/2011JC007646.

    Article  Google Scholar 

  • Adams, L. M., LeVeque, R. J., & Gonzalez, F. I. (2015). The pattern method for incorporating tidal uncertainty into probabilistic tsunami hazard assessment (PTHA). Natural Hazards, 76(1), 19–39.

    Article  Google Scholar 

  • Agbaglah, G., Delaux, S., Fuster, D., Hoepffner, J., Josserand, C., Popinet, S., et al. (2011). Parallel simulation of multiphase flows using octree adaptivity and the volume-of-fluid method. Comptes Rendus Méc, 339(2–3), 194–207.

    Article  Google Scholar 

  • Anonymous (1908). Miramar relics, Evening Post, Vol. v. LXXVI issue 108: Wellington.

  • Beavan, J., Tregoning, P., Bevis, M., Kato, T., & Meertens, C. (2002) Motion and rigidity of the Pacific plate and implications for plate boundary deformation. Journal of Geophysical Research-Solid Earth, v. 107, no. B10.

  • Bondevik, S., Løvholt, F., Harbitz, C. B., Mangerud, J., Dawson, A., & Svendsen, J. I. (2005). The Storegga Slide tsunami comparing field observations with numerical simulations. Marine and Petroleum Geology, 22(1–2), 195–208.

    Article  Google Scholar 

  • Clark, K. J., Hayward, B. W., Cochran, U. A., Wallace, L. M., Power, W. L., & Sabaa, A. T. (2015). Evidence for Past Subduction Earthquakes at a Plate Boundary with Widespread Upper Plate Faulting: Southern Hikurangi Margin. New Zealand: Bulletin of the Seismological Society of America, 105(3), 1661–1690.

    Google Scholar 

  • Downes, G. (2014) New Zealand Tsunami Database: Historical and Modern Records. http://data.gns.cri.nz/tsunami/. Accessed 17 May 2015.

  • Enet, F., & Grilli, S. T. (2007) Experimental study of tsunami generation by three-dimensional rigid underwater landslides. Journal of Waterway Port Coastal and Ocean Engineering-ASCE 133(6), 442–454.

  • Enet, F., Grilli, S. T., & Watts, P. (2003) Laboratory experiments for tsunamis generated by underwater landslide: comparison with numerical modeling. In Proceedings of the thirteenth (2003) International offshore and polar engineering conference (pp. 372–379).

  • Fine, I. V., Rabinovich, A. B., Bornhold, B. D., Thomson, R. E., & Kulikov, E. A. (2005). The Grand Banks landslide-generated tsunami of November 18, 1929: preliminary analysis and numerical modeling. Marine Geology, 215(1–2), 45–57.

    Article  Google Scholar 

  • Geist, E. L., & Lynett, P. J. (2014). Source Processes for the Probabilistic Assessment of Tsunami Hazards. Oceanography, 27(2), 86–93.

    Article  Google Scholar 

  • Geist, E. L., Lynett, P. J., & Chaytor, J. D. (2009). Hydrodynamic modeling of tsunamis from the Currituck landslide. Marine Geology, 264(1–2), 41–52.

    Article  Google Scholar 

  • Geist, E., & ten Brink, U. S. (2012) NRC/USGS Workshop Report: Landslide Tsunami Probability.

  • Gisler, G., Weaver, R., & Gittings, M. (2006). SAGE calculations of the tsunami threat from La Palma. Science of Tsunami Hazards, 24, 288–301.

    Google Scholar 

  • Glimsdal, S., Pedersen, G. K., Harbitz, C. B., & Løvholt, F. (2013). Dispersion of tsunamis: does it really matter?. Natural Hazards and Earth System Sciences, 13(6), 1507–1526.

  • Goff, J. R., & Chague-Goff, C. (2009). Brief communication: cetaceans and tsunamis—whatever remains, however improbable, must be the truth? Natural Hazards and Earth System Sciences, v, 9(3), 855–857.

  • Goff, J. R., & Chague-Goff, C. (2012). A review of palaeo-tsunamis for the Christchurch region, New Zealand, Quaternary Science Reviews, 57, 136–156.

  • Goff, J. R., Nichol, S., & Kennedy, D. M. (2010). Development of a palaeotsunami database for New Zealand. Natural Hazards, 54(2), 193–208.

    Article  Google Scholar 

  • Gonzalez, F. I., Geist, E. L., Jaffe, B., Kanoglu, U., Mofjeld, H., Synolakis, C. E., Titov, V. V., Arcas, D., Bellomo, D., Carlton, D., Horning, T., Johnson, J., Newman, J., Parsons, T., Peters, R., Peterson, C., Priest, G., Venturato, A., Weber, J., Wong, F., & Yalciner, A. (2009). Probabilistic tsunami hazard assessment at Seaside, Oregon, for near- and far-field seismic sources. Journal of Geophysical Research-Oceans, 114, C11023. doi:10.1029/2008JC005132.

    Article  Google Scholar 

  • Grezio, A., Marzocchi, W., Sandri, L., & Gasparini, P. (2010). A Bayesian procedure for Probabilistic Tsunami Hazard Assessment. Natural Hazards, 53(1), 159–174.

    Article  Google Scholar 

  • Grezio, A., Sandri, L., Marzocchi, W., Argnani, A., Gasparini, P., & Selva, J. (2012). Probabilistic tsunami hazard assessment for Messina Strait Area (Sicily, Italy). Natural Hazards, 64(1), 329–358.

    Article  Google Scholar 

  • Grilli, S. T., Taylor, O.-D. S., Baxter, C. D. P., & Maretzki, S. (2009). A probabilistic approach for determining submarine landslide tsunami hazard along the upper east coast of the United States. Marine Geology, 264(1–2), 74–97.

    Article  Google Scholar 

  • Harbitz, C. B., Løvholt, F., & Bungum, H. (2014). Submarine landslide tsunamis: how extreme and how likely? Natural Hazards, 72(3), 1341–1374.

    Article  Google Scholar 

  • Harbitz, C. B., Løvholt, F., Pedersen, G., & Masson, D. G. (2006). Mechanisms of tsunami generation by submarine landslides: a short review. Norwegian Journal of Geology, 86(3), 255–264.

    Google Scholar 

  • Imran, J., Parker, G., Locat, J., & Lee, H. (2001). 1D numerical model of muddy subaqueous and subaerial debris flows. Journal of Hydraulic Engineering-Asce, 127(11), 959–968.

  • Kajiura, K. (1963). The leading wave of the tsunami: Bulletin of the Earthquake Research Institute Vol. 41, pp. 535–571.

  • Kawamura, K., Laberg, J. S., & Kanamatsu, T. (2014). Potential tsunamigenic submarine landslides in active margins. Marine Geology, 356, 44–49.

    Article  Google Scholar 

  • King, D. N., & Goff, J. R. (2010). Benefitting from differences in knowledge, practice and belief: Maori oral traditions and natural hazards science. Natural Hazards and Earth System Sciences, 10(9), 1927–1940.

  • Lane, E. M., Gillibrand, P. A., Wang, X., & Power, W. (2013). A probabilistic tsunami hazard study of the Auckland Region, Part II: inundation modelling and hazard assessment. Pure and Applied Geophysics170, 1635. doi:10.1007/s00024-012-0538-9.

    Article  Google Scholar 

  • Lane, E. M., Mountjoy, J. J., Power, W. L., & Popinet, S. (2016). Initialising landslide-generated tsunamis for probabilistic tsunami hazard assessment in Cook Strait. The International Journal of Ocean and Climate Systems, 4–13. doi:10.1177/1759313115623162.

  • Leonard, L. J., Rogers, G. C., & Mazzotti, S. (2014). Tsunami hazard assessment of Canada. Natural Hazards, 70(1), 237–274.

    Article  Google Scholar 

  • Lewis, K. B., Carter, L., & Davey, F. J. (1994). The opening of Cook Strait: interglacial tidal scour and aligning basins at a subduction to transform plate edge. Marine Geology, 116(3–4), 293–312.

    Article  Google Scholar 

  • Liu, P. L.-F., Wu, T.-R., Raichlen, F., Synolakis, C., & Borrero, J. C. (2005). Runup and rundown generated by three-dimensional sliding masses. Journal of Fluid Mechanics, 536, 107–144.

    Article  Google Scholar 

  • Løvholt, F., Lynett, P., & Pedersen, G. (2013). Simulating run-up on steep slopes with operational Boussinesq models; capabilities, spurious effects and instabilities. Nonlinear Processes in Geophysics, 20(3), 379–395.

    Article  Google Scholar 

  • Løvholt, F., Pedersen, G., Harbitz, C. B., Glimsdal, S., & Kim, J. (2015) On the characteristics of landslide tsunamis. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 373, 20140376. doi:10.1098/rsta.2014.0376.

    Article  Google Scholar 

  • Ma, G. F., Kirby, J. T., & Shi, F. Y. (2013). Numerical simulation of tsunami waves generated by deformable submarine landslides. Ocean Modelling, 69, 146–165.

    Article  Google Scholar 

  • Madsen, P. A., Bingham, H. B., & Schaffer, H. A. (2003). Boussinesq-type formulations for fully nonlinear and extremely dispersive water waves: derivation and analysis. Proceedings of the Royal Society a-Mathematical Physical and Engineering Sciences, 459(2033), 1075–1104.

    Article  Google Scholar 

  • McFadgen, B. G., & Goff, J. R. (2007). Tsunamis in the New Zealand archaeological record. Sedimentary Geology, 200(3–4), 263–274.

    Article  Google Scholar 

  • Micallef, A., Mountjoy, J. J., Canals, M., & Lastras, G. (2012). Deep-seated bedrock landslides and submarine canyon evolution in an active tectonic margin: Cook Strait, New Zealand. In Y. Yamada, K. Kawamura, K. Ikehara, Y. Ogawa, R. Urgeles, D. Mosher, J. Chaytor, & M. Strasser (Eds.), Submarine mass movements and their consequences (Vol. 31, pp. 201–212). Netherlands: Springer.

    Chapter  Google Scholar 

  • Mountjoy, J. J., Barnes, P. M., & Pettinga, J. R. (2009). Morphostructure and evolution of submarine canyons across an active margin: Cook Strait sector of the Hikurangi Margin, New Zealand. Marine Geology, 260(1–4), 45–68.

    Article  Google Scholar 

  • Mountjoy, J. J., Micallef, A., Stevens, C. L., & Stirling, M. W. (2014). Holocene sedimentary activity in a non-terrestrially coupled submarine canyon: Cook Strait Canyon system. New Zealand: Deep Sea Research Part II: Topical Studies in Oceanography, 104, 120–133.

    Article  Google Scholar 

  • Mueller, C., Mountjoy, J. J., Power, W. L., Lane, E. M., & Wang, X. (2016) Towards a spatial probabilistic submarine landslide hazard model for submarine canyons. In G. Lamarche, J. Mountjoy, S. Bull, T. Hubble, S. Krastel, E. Lane, A. Micallef, L. Moscardelli, C. Mueller, I. Pecher & S. Woelz, (eds.) Submarine mass movements and their consequences, Vol. 41 (pp. 589–597). Springer, Berlin.

  • Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 75(4), 1135–1154.

    Google Scholar 

  • Okal, E. A. (2003). Normal mode energetics for far-field tsunamis generated by dislocations and landslides. Pure and Applied Geophysics, 160(10–11), 2189–2221.

    Article  Google Scholar 

  • Okal, E. A., & Synolakis, C. E. (2003). A theoretical comparison of tsunamis from dislocations and landslides. Pure and Applied Geophysics, 160(10–11), 2177–2188.

    Article  Google Scholar 

  • Okal, E. A., & Synolakis, C. E. (2004). Source discriminants for near-field tsunamis. Geophysical Journal International, 158(3), 899–912.

  • Pampell-Manis, A., Horrillo, J., Shigihara, Y., & Parambath, L. (2016). Probabilistic assessment of landslide tsunami hazard for the northern Gulf of Mexico. Journal of Geophysical Research-Oceans, 121(1), 1009–1027.

    Article  Google Scholar 

  • Pedersen, G. (2008). Modeling runup with depth integrated equation models. In P. L. F. Liu, H. Yeh, C. Synolakis (Ed.), Advanced Numerical Models for Simulating Tsunami Waves and Runup. Advances in Coastal and Ocean Engineering (Vol. 10, pp. 3–41). Singapore: World Scientific.

  • Popinet, S. (2003). Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries. Journal of Computational Physics, 190(2), 572–600.

    Article  Google Scholar 

  • Popinet, S. (2011). Quadtree-adaptive tsunami modelling. Ocean Dynamics, v, 61(9), 1261–1285.

  • Popinet, S. (2012). Adaptive modelling of long-distance wave propagation and fine-scale flooding during the Tohoku tsunami. Natural Hazards and Earth System Sciences, v. 12(4), 1213–1227.

  • Popinet, S., & Rickard, G. (2007). A tree-based solver for adaptive ocean modelling. Ocean Modelling, 16(3–4), 224–249.

    Article  Google Scholar 

  • Power, W. L. (2013). Review of Tsunami Hazard in New Zealand (2013 Update), GNS Science Consultancy Report 2013/131.

  • Proctor, R., & Carter, L. (1989). Tidal and sedimentary response to the late Quaternary closure and opening of Cook Strait, New Zealand: results from numerical modeling. Paleoceanography, 4(2), 167–180.

    Article  Google Scholar 

  • Savage, S. B., & Hutter, K. (1989). The motion of a finite mass of granular material down a rough incline. Journal of Fluid Mechanics, 199, 177–215.

    Article  Google Scholar 

  • Stirling, M., McVerry, G., Gerstenberger, M., Litchfield, N., Van Dissen, R., Berryman, K., et al. (2012). National seismic hazard model for New Zealand: 2010 Update. Bulletin of the Seismological Society of America, 102(4), 1514–1542.

    Article  Google Scholar 

  • Strasser, M., Koelling, M., Ferreira, C. d. S., Fink, H. G., Fujiwara, T., Henkel, S., Ikehara, K., Kanamatsu, T., Kawamura, K., Kodaira, S., Roemer, M., Wefer, G., SO219A, R. V. S. C., & scientists, J. C. M.-E. (2013). A slump in the trench: tracking the impact of the 2011 Tohoku-Oki earthquake, Geology, v. 41(8), 935–938.

  • Tappin, D. R., Grilli, S. T., Harris, J. C., Geller, R. J., Masterlark, T., Kirby, J. T., et al. (2014). Did a submarine landslide contribute to the 2011 Tohoku tsunami? Marine Geology, 357, 344–361.

    Article  Google Scholar 

  • Tappin, D. R., Watts, P., and Grilli, S. T. (2008). The Papua New Guinea tsunami of 17 July 1998: anatomy of a catastrophic event, Natural Hazards and Earth System Sciences, 8(2), 243–266.

  • ten Brink, U. S., Chaytor, J. D., Geist, E. L., Brothers, D. S., and Andrews, B. D. (2014). Assessment of tsunami hazard to the US Atlantic margin. Marine Geology, 353, 31–54.

  • ten Brink, U. S., Geist, E. L., & Andrews, B. D. (2006). Size distribution of submarine landslides and its implication to tsunami hazard in Puerto Rico. Geophysical Research Letters, 33, L11307. doi:10.1029/2006GL026125.

    Article  Google Scholar 

  • ten Brink, U. S., Lee, H. J., Geist, E. L., & Twichell, D. (2009). Assessment of tsunami hazard to the US East Coast using relationships between submarine landslides and earthquakes. Marine Geology, 264(1–2), 65–73.

    Article  Google Scholar 

  • Voellmy, A. (1955). Über die Zerstörungskraft von Lawinen: Schweizerische Bauzeitung, 73(12,15,17,19), 159–165, 212–217, 246–249, 280–285.

  • Walters, R. A., Gillibrand, P. A., Bell, R. G., & Lane, E. M. (2010). A study of tides and currents in Cook Strait, New Zealand. Ocean Dynamics, 60(6), 1559–1580.

    Article  Google Scholar 

  • Watts, P., Grilli, S. T., Kirby, J. T., Fryer, G. J., & Tappin, D. R. (2003). Landslide tsunami case studies using a Boussinesq model and a fully nonlinear tsunami generation model. Natural Hazards and Earth System Sciences, 3(5), 391–402.

    Article  Google Scholar 

  • Watts, P., Grilli, S. T., Tappin, D. R., & Fryer, G. J. (2005). Tsunami generation by submarine mass failure. II: predictive equations and case studies. Journal of Waterway Port Coastal and Ocean Engineering-ASCE. 131(6), 298–310. doi:10.1061/(ASCE)0733-950X(2005)131:6(298).

    Article  Google Scholar 

  • WREMO (2015). Tsunami evacuation zone maps. Wellington Region Emergency Management Office. http://www.getprepared.org.nz/tsunami-zone-maps. Accessed 28 Apr 2016.

Download references

Acknowledgments

This work was supported by the New Zealand Natural Hazards Platform (Contracts 2012-NIW-03-NHRP and CS-GNS-25) and by NIWA and GNS as part of its Government-funded, core research. The authors also wish to acknowledge the contribution of NeSI to the results of this research. New Zealand’s national compute and analytics services and team are supported by the New Zealand eScience Infrastructure (NeSI) and funded jointly by NeSI’s collaborator institutions and through the Ministry of Business, Innovation and Employment. URL http://www.nesi.org.nz. Thanks also to Finn Løvholt and an anonymous reviewer for their comments which have significantly improved this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily M. Lane.

Appendix 1: Tabulation of uncertainties and corresponding assumptions

Appendix 1: Tabulation of uncertainties and corresponding assumptions

The purpose of this paper is to develop a first iteration probabilistic tsunami hazard model for landslide tsunamis in Cook Strait. This analysis contains many uncertainties, and rests on various assumptions and approximations that have been made. Before the conclusions of this report can form the basis for extensive mitigation measures, it will be important to thoroughly analyse the various uncertainties involved. This is a large and complicated task, and this paper is intended to provide only a starting point for such an analysis. In Table A.1, we summarise the various identified sources of uncertainty, and the assumptions we have made here with regard to them. Where we believe an assumption is conservative (biased towards a greater tsunami hazard) we have indicated this with a (+), where we believe that the assumption is optimistic (biased towards a lower tsunami hazard) we have indicated this with a (−), and where there appears to be no obvious bias we have indicated this with a (~).

Table A.1: Tabulation of sources of uncertainty in the PTHA, and of assumptions made regarding them. Where it is thought that an assumption has a bias this is indicated with a (+) or (−) according to whether it is thought likely to increase or decrease the estimate of tsunami hazard. Where there is no clearly evident bias this is indicated with a (~).

Uncertainty Assumption
Accuracy of landslide magnitude–frequency distribution Assessed survey data are representative of current day conditions (~); un-assessed areas show the same M-F characteristics as the surveyed areas (~); all scars were generated in rapid single-event landslides (+)
Position of landslide block on slope before failure Top of slope (+)
Modelling assumptions on landslide rheology and failure mode—only one realisation modelled Gerris Volume of Fluid solver used (~)
Landslide density Relative density of 2.0 (~)
Shape of landslide body Triangular prism (~)
Degree of breakup of landslide block during descent Block remains rigid and intact (+)
Degree of breakup of landslide material on hitting canyon floor Total breakup into dense fluid (~)
Inaccuracy in modelling caused by using simplified 2D vertical slice profile to represent 3D canyon shape Simplified 2D profile approximates canyon with translational symmetry (~)
Conversion of 1D water surface into initial condition for 2D tsunami propagation modelling Accurate conversion of water levels (~); water velocity at initiation of tsunami propagation model is zero (−), see Lane et al. (2016)
Effect of dispersion on tsunami propagation Non-dispersive tsunami propagation equations (+)
Influence of bathymetry data quality Used best available (~)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lane, E.M., Mountjoy, J.J., Power, W.L. et al. Probabilistic Hazard of Tsunamis Generated by Submarine Landslides in the Cook Strait Canyon (New Zealand). Pure Appl. Geophys. 173, 3757–3774 (2016). https://doi.org/10.1007/s00024-016-1410-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-016-1410-0

Keywords

  • Probabilistic
  • tsunami
  • submarine landslides
  • Cook Strait