Abadie, S. M., Harris, J. C., Grilli, S. T., & Fabre, R. (2012). Numerical modeling of tsunami waves generated by the flank collapse of the Cumbre Vieja Volcano (La Palma, Canary Islands): Tsunami source and near field effects. Journal of Geophysical Research-Oceans, 117, C05030. doi:10.1029/2011JC007646.
Article
Google Scholar
Adams, L. M., LeVeque, R. J., & Gonzalez, F. I. (2015). The pattern method for incorporating tidal uncertainty into probabilistic tsunami hazard assessment (PTHA). Natural Hazards,
76(1), 19–39.
Article
Google Scholar
Agbaglah, G., Delaux, S., Fuster, D., Hoepffner, J., Josserand, C., Popinet, S., et al. (2011). Parallel simulation of multiphase flows using octree adaptivity and the volume-of-fluid method. Comptes Rendus Méc,
339(2–3), 194–207.
Article
Google Scholar
Anonymous (1908). Miramar relics, Evening Post, Vol. v. LXXVI issue 108: Wellington.
Beavan, J., Tregoning, P., Bevis, M., Kato, T., & Meertens, C. (2002) Motion and rigidity of the Pacific plate and implications for plate boundary deformation. Journal of Geophysical Research-Solid Earth, v. 107, no. B10.
Bondevik, S., Løvholt, F., Harbitz, C. B., Mangerud, J., Dawson, A., & Svendsen, J. I. (2005). The Storegga Slide tsunami comparing field observations with numerical simulations. Marine and Petroleum Geology,
22(1–2), 195–208.
Article
Google Scholar
Clark, K. J., Hayward, B. W., Cochran, U. A., Wallace, L. M., Power, W. L., & Sabaa, A. T. (2015). Evidence for Past Subduction Earthquakes at a Plate Boundary with Widespread Upper Plate Faulting: Southern Hikurangi Margin. New Zealand: Bulletin of the Seismological Society of America,
105(3), 1661–1690.
Google Scholar
Downes, G. (2014) New Zealand Tsunami Database: Historical and Modern Records. http://data.gns.cri.nz/tsunami/. Accessed 17 May 2015.
Enet, F., & Grilli, S. T. (2007) Experimental study of tsunami generation by three-dimensional rigid underwater landslides. Journal of Waterway Port Coastal and Ocean Engineering-ASCE 133(6), 442–454.
Enet, F., Grilli, S. T., & Watts, P. (2003) Laboratory experiments for tsunamis generated by underwater landslide: comparison with numerical modeling. In Proceedings of the thirteenth (2003) International offshore and polar engineering conference (pp. 372–379).
Fine, I. V., Rabinovich, A. B., Bornhold, B. D., Thomson, R. E., & Kulikov, E. A. (2005). The Grand Banks landslide-generated tsunami of November 18, 1929: preliminary analysis and numerical modeling. Marine Geology,
215(1–2), 45–57.
Article
Google Scholar
Geist, E. L., & Lynett, P. J. (2014). Source Processes for the Probabilistic Assessment of Tsunami Hazards. Oceanography,
27(2), 86–93.
Article
Google Scholar
Geist, E. L., Lynett, P. J., & Chaytor, J. D. (2009). Hydrodynamic modeling of tsunamis from the Currituck landslide. Marine Geology,
264(1–2), 41–52.
Article
Google Scholar
Geist, E., & ten Brink, U. S. (2012) NRC/USGS Workshop Report: Landslide Tsunami Probability.
Gisler, G., Weaver, R., & Gittings, M. (2006). SAGE calculations of the tsunami threat from La Palma. Science of Tsunami Hazards,
24, 288–301.
Google Scholar
Glimsdal, S., Pedersen, G. K., Harbitz, C. B., & Løvholt, F. (2013). Dispersion of tsunamis: does it really matter?. Natural Hazards and Earth System Sciences, 13(6), 1507–1526.
Goff, J. R., & Chague-Goff, C. (2009). Brief communication: cetaceans and tsunamis—whatever remains, however improbable, must be the truth? Natural Hazards and Earth System Sciences, v, 9(3), 855–857.
Goff, J. R., & Chague-Goff, C. (2012). A review of palaeo-tsunamis for the Christchurch region, New Zealand, Quaternary Science Reviews, 57, 136–156.
Goff, J. R., Nichol, S., & Kennedy, D. M. (2010). Development of a palaeotsunami database for New Zealand. Natural Hazards,
54(2), 193–208.
Article
Google Scholar
Gonzalez, F. I., Geist, E. L., Jaffe, B., Kanoglu, U., Mofjeld, H., Synolakis, C. E., Titov, V. V., Arcas, D., Bellomo, D., Carlton, D., Horning, T., Johnson, J., Newman, J., Parsons, T., Peters, R., Peterson, C., Priest, G., Venturato, A., Weber, J., Wong, F., & Yalciner, A. (2009). Probabilistic tsunami hazard assessment at Seaside, Oregon, for near- and far-field seismic sources. Journal of Geophysical Research-Oceans, 114, C11023. doi:10.1029/2008JC005132.
Article
Google Scholar
Grezio, A., Marzocchi, W., Sandri, L., & Gasparini, P. (2010). A Bayesian procedure for Probabilistic Tsunami Hazard Assessment. Natural Hazards,
53(1), 159–174.
Article
Google Scholar
Grezio, A., Sandri, L., Marzocchi, W., Argnani, A., Gasparini, P., & Selva, J. (2012). Probabilistic tsunami hazard assessment for Messina Strait Area (Sicily, Italy). Natural Hazards,
64(1), 329–358.
Article
Google Scholar
Grilli, S. T., Taylor, O.-D. S., Baxter, C. D. P., & Maretzki, S. (2009). A probabilistic approach for determining submarine landslide tsunami hazard along the upper east coast of the United States. Marine Geology,
264(1–2), 74–97.
Article
Google Scholar
Harbitz, C. B., Løvholt, F., & Bungum, H. (2014). Submarine landslide tsunamis: how extreme and how likely? Natural Hazards,
72(3), 1341–1374.
Article
Google Scholar
Harbitz, C. B., Løvholt, F., Pedersen, G., & Masson, D. G. (2006). Mechanisms of tsunami generation by submarine landslides: a short review. Norwegian Journal of Geology,
86(3), 255–264.
Google Scholar
Imran, J., Parker, G., Locat, J., & Lee, H. (2001). 1D numerical model of muddy subaqueous and subaerial debris flows. Journal of Hydraulic Engineering-Asce, 127(11), 959–968.
Kajiura, K. (1963). The leading wave of the tsunami: Bulletin of the Earthquake Research Institute Vol. 41, pp. 535–571.
Kawamura, K., Laberg, J. S., & Kanamatsu, T. (2014). Potential tsunamigenic submarine landslides in active margins. Marine Geology,
356, 44–49.
Article
Google Scholar
King, D. N., & Goff, J. R. (2010). Benefitting from differences in knowledge, practice and belief: Maori oral traditions and natural hazards science. Natural Hazards and Earth System Sciences, 10(9), 1927–1940.
Lane, E. M., Gillibrand, P. A., Wang, X., & Power, W. (2013). A probabilistic tsunami hazard study of the Auckland Region, Part II: inundation modelling and hazard assessment. Pure and Applied Geophysics, 170, 1635. doi:10.1007/s00024-012-0538-9.
Article
Google Scholar
Lane, E. M., Mountjoy, J. J., Power, W. L., & Popinet, S. (2016). Initialising landslide-generated tsunamis for probabilistic tsunami hazard assessment in Cook Strait. The International Journal of Ocean and Climate Systems, 4–13. doi:10.1177/1759313115623162.
Leonard, L. J., Rogers, G. C., & Mazzotti, S. (2014). Tsunami hazard assessment of Canada. Natural Hazards,
70(1), 237–274.
Article
Google Scholar
Lewis, K. B., Carter, L., & Davey, F. J. (1994). The opening of Cook Strait: interglacial tidal scour and aligning basins at a subduction to transform plate edge. Marine Geology,
116(3–4), 293–312.
Article
Google Scholar
Liu, P. L.-F., Wu, T.-R., Raichlen, F., Synolakis, C., & Borrero, J. C. (2005). Runup and rundown generated by three-dimensional sliding masses. Journal of Fluid Mechanics,
536, 107–144.
Article
Google Scholar
Løvholt, F., Lynett, P., & Pedersen, G. (2013). Simulating run-up on steep slopes with operational Boussinesq models; capabilities, spurious effects and instabilities. Nonlinear Processes in Geophysics,
20(3), 379–395.
Article
Google Scholar
Løvholt, F., Pedersen, G., Harbitz, C. B., Glimsdal, S., & Kim, J. (2015) On the characteristics of landslide tsunamis. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 373, 20140376. doi:10.1098/rsta.2014.0376.
Article
Google Scholar
Ma, G. F., Kirby, J. T., & Shi, F. Y. (2013). Numerical simulation of tsunami waves generated by deformable submarine landslides. Ocean Modelling,
69, 146–165.
Article
Google Scholar
Madsen, P. A., Bingham, H. B., & Schaffer, H. A. (2003). Boussinesq-type formulations for fully nonlinear and extremely dispersive water waves: derivation and analysis. Proceedings of the Royal Society a-Mathematical Physical and Engineering Sciences,
459(2033), 1075–1104.
Article
Google Scholar
McFadgen, B. G., & Goff, J. R. (2007). Tsunamis in the New Zealand archaeological record. Sedimentary Geology,
200(3–4), 263–274.
Article
Google Scholar
Micallef, A., Mountjoy, J. J., Canals, M., & Lastras, G. (2012). Deep-seated bedrock landslides and submarine canyon evolution in an active tectonic margin: Cook Strait, New Zealand. In Y. Yamada, K. Kawamura, K. Ikehara, Y. Ogawa, R. Urgeles, D. Mosher, J. Chaytor, & M. Strasser (Eds.), Submarine mass movements and their consequences (Vol. 31, pp. 201–212). Netherlands: Springer.
Chapter
Google Scholar
Mountjoy, J. J., Barnes, P. M., & Pettinga, J. R. (2009). Morphostructure and evolution of submarine canyons across an active margin: Cook Strait sector of the Hikurangi Margin, New Zealand. Marine Geology,
260(1–4), 45–68.
Article
Google Scholar
Mountjoy, J. J., Micallef, A., Stevens, C. L., & Stirling, M. W. (2014). Holocene sedimentary activity in a non-terrestrially coupled submarine canyon: Cook Strait Canyon system. New Zealand: Deep Sea Research Part II: Topical Studies in Oceanography,
104, 120–133.
Article
Google Scholar
Mueller, C., Mountjoy, J. J., Power, W. L., Lane, E. M., & Wang, X. (2016) Towards a spatial probabilistic submarine landslide hazard model for submarine canyons. In G. Lamarche, J. Mountjoy, S. Bull, T. Hubble, S. Krastel, E. Lane, A. Micallef, L. Moscardelli, C. Mueller, I. Pecher & S. Woelz, (eds.) Submarine mass movements and their consequences, Vol. 41 (pp. 589–597). Springer, Berlin.
Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America,
75(4), 1135–1154.
Google Scholar
Okal, E. A. (2003). Normal mode energetics for far-field tsunamis generated by dislocations and landslides. Pure and Applied Geophysics,
160(10–11), 2189–2221.
Article
Google Scholar
Okal, E. A., & Synolakis, C. E. (2003). A theoretical comparison of tsunamis from dislocations and landslides. Pure and Applied Geophysics,
160(10–11), 2177–2188.
Article
Google Scholar
Okal, E. A., & Synolakis, C. E. (2004). Source discriminants for near-field tsunamis. Geophysical Journal International, 158(3), 899–912.
Pampell-Manis, A., Horrillo, J., Shigihara, Y., & Parambath, L. (2016). Probabilistic assessment of landslide tsunami hazard for the northern Gulf of Mexico. Journal of Geophysical Research-Oceans,
121(1), 1009–1027.
Article
Google Scholar
Pedersen, G. (2008). Modeling runup with depth integrated equation models. In P. L. F. Liu, H. Yeh, C. Synolakis (Ed.), Advanced Numerical Models for Simulating Tsunami Waves and Runup. Advances in Coastal and Ocean Engineering (Vol. 10, pp. 3–41). Singapore: World Scientific.
Popinet, S. (2003). Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries. Journal of Computational Physics,
190(2), 572–600.
Article
Google Scholar
Popinet, S. (2011). Quadtree-adaptive tsunami modelling. Ocean Dynamics, v, 61(9), 1261–1285.
Popinet, S. (2012). Adaptive modelling of long-distance wave propagation and fine-scale flooding during the Tohoku tsunami. Natural Hazards and Earth System Sciences, v. 12(4), 1213–1227.
Popinet, S., & Rickard, G. (2007). A tree-based solver for adaptive ocean modelling. Ocean Modelling,
16(3–4), 224–249.
Article
Google Scholar
Power, W. L. (2013). Review of Tsunami Hazard in New Zealand (2013 Update), GNS Science Consultancy Report 2013/131.
Proctor, R., & Carter, L. (1989). Tidal and sedimentary response to the late Quaternary closure and opening of Cook Strait, New Zealand: results from numerical modeling. Paleoceanography,
4(2), 167–180.
Article
Google Scholar
Savage, S. B., & Hutter, K. (1989). The motion of a finite mass of granular material down a rough incline. Journal of Fluid Mechanics,
199, 177–215.
Article
Google Scholar
Stirling, M., McVerry, G., Gerstenberger, M., Litchfield, N., Van Dissen, R., Berryman, K., et al. (2012). National seismic hazard model for New Zealand: 2010 Update. Bulletin of the Seismological Society of America,
102(4), 1514–1542.
Article
Google Scholar
Strasser, M., Koelling, M., Ferreira, C. d. S., Fink, H. G., Fujiwara, T., Henkel, S., Ikehara, K., Kanamatsu, T., Kawamura, K., Kodaira, S., Roemer, M., Wefer, G., SO219A, R. V. S. C., & scientists, J. C. M.-E. (2013). A slump in the trench: tracking the impact of the 2011 Tohoku-Oki earthquake, Geology, v. 41(8), 935–938.
Tappin, D. R., Grilli, S. T., Harris, J. C., Geller, R. J., Masterlark, T., Kirby, J. T., et al. (2014). Did a submarine landslide contribute to the 2011 Tohoku tsunami? Marine Geology,
357, 344–361.
Article
Google Scholar
Tappin, D. R., Watts, P., and Grilli, S. T. (2008). The Papua New Guinea tsunami of 17 July 1998: anatomy of a catastrophic event, Natural Hazards and Earth System Sciences, 8(2), 243–266.
ten Brink, U. S., Chaytor, J. D., Geist, E. L., Brothers, D. S., and Andrews, B. D. (2014). Assessment of tsunami hazard to the US Atlantic margin. Marine Geology, 353, 31–54.
ten Brink, U. S., Geist, E. L., & Andrews, B. D. (2006). Size distribution of submarine landslides and its implication to tsunami hazard in Puerto Rico. Geophysical Research Letters, 33, L11307. doi:10.1029/2006GL026125.
Article
Google Scholar
ten Brink, U. S., Lee, H. J., Geist, E. L., & Twichell, D. (2009). Assessment of tsunami hazard to the US East Coast using relationships between submarine landslides and earthquakes. Marine Geology,
264(1–2), 65–73.
Article
Google Scholar
Voellmy, A. (1955). Über die Zerstörungskraft von Lawinen: Schweizerische Bauzeitung, 73(12,15,17,19), 159–165, 212–217, 246–249, 280–285.
Walters, R. A., Gillibrand, P. A., Bell, R. G., & Lane, E. M. (2010). A study of tides and currents in Cook Strait, New Zealand. Ocean Dynamics,
60(6), 1559–1580.
Article
Google Scholar
Watts, P., Grilli, S. T., Kirby, J. T., Fryer, G. J., & Tappin, D. R. (2003). Landslide tsunami case studies using a Boussinesq model and a fully nonlinear tsunami generation model. Natural Hazards and Earth System Sciences,
3(5), 391–402.
Article
Google Scholar
Watts, P., Grilli, S. T., Tappin, D. R., & Fryer, G. J. (2005). Tsunami generation by submarine mass failure. II: predictive equations and case studies. Journal of Waterway Port Coastal and Ocean Engineering-ASCE. 131(6), 298–310. doi:10.1061/(ASCE)0733-950X(2005)131:6(298).
Article
Google Scholar
WREMO (2015). Tsunami evacuation zone maps. Wellington Region Emergency Management Office. http://www.getprepared.org.nz/tsunami-zone-maps. Accessed 28 Apr 2016.