Skip to main content
Log in

High Resistant Sand Injected Marl and Low Resistant Damaged Marl to Locate and Characterize the Thénia Fault Zone in Boumerdes City (North-Central Algeria)

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The purpose of this study was to locate and characterize the Thénia Fault Zone (TFZ) in the urban area of Boumerdes city; geological and electrical resistivity tomography surveys have targeted the Plaisancian marl and its Quaternary cover. As a whole, data indicate a complex near-vertical fault zone with an asymmetric and zoned internal structure of at least 150 m wide and with a straight N120° overall trending. The fault zone is traversed with two elongated parallel fault branches (FB1 and FB2), generally, 70 m distant from each other. These fault branches locate two intense damage zones (IDZs) of 10–15 m thick each, situated at the margin of two damage zones each having a thickness of several tens of meters. Downward sand injections into IDZs during Pleistocene epoch, possible pulverization of Plaisancian marl rocks, systematic deflection of actual stream channels, and vertical displacement of at least 30 m affecting Quaternary alluvial deposits show that the area would have undergone active tectonic driven by the TFZ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aite, M. O. (1994). Analyse de la micro fracturation et paléo-contraintes dans le Néogène post-nappes de Grande Kabylie (Algérie). Unpubl. doctoral thesis, Université du Maine, E.A, 1014, Le Mans, France.

  • Ayadi, A., Dorbath, C., Ousadou, F., Maouche, S., Chikh, M., Bounif, M. A., et al. (2008). Zemmouri earthquake rupture zone (Mw 6.8, Algeria): Aftershocks sequence relocation and 3D velocity model. Journal of Geophysical Research, 113(B09301), 15. doi:10.1029/2007JB005257.

    Google Scholar 

  • Aymé, A. (1952). Le Quaternaire littoral des environs d’Alger. Actes du congres Panafricain de Prehistoire, II session, Alger, p. 243–246.

  • Beaudoin, B., & Friès, G. (1982). Les filons gréseux sédimentaires per descensum dans un système de fractures ouvertes. Le cas de l’Albien de Bevons (Alpes-de-Haute-Provence). Comptes Rendus de l’Académie des Sciences, 295, 385–387.

    Google Scholar 

  • Belabbes, S., Wicks, C., Çakir, Z., & Meghraoui, M. (2009). Rupture parameters of the 2003 Zemmouri (Mw 6.8), Algeria, earthquake from joint inversion of interferometric synthetic aperture radar, coastal uplift, and GPS. Journal of Geophysical Research, 114(B03406), 16. doi:10.1029/2008JB005912.

    Google Scholar 

  • Belanteur, O., Bellon, H., Maury, R. C., Ouabadi, A., Coutelle, A., Semroud, B., Megarsti, M., & Fourcade, S. (1995). Le magmatisme Miocène de l’Est Algérois, géologie, géochimie et géochronologie 40K-40Ar. Comptes rendus de l’Académie des sciences, Paris, Géol., 321, Sér. IIa, 489–496.

  • Bensalem, R., Chatelain, J. L., Machane, D., Oubaiche, E. H., Hellel, M., Guillier, B., et al. (2010). Ambient vibration techniques applied to explain heavy damage caused in Corso (Algeria) by the 2003 Boumerdes Earthquake: Understanding seismic amplification due to gentle slopes. Seismological Research Letters, 81, 928–940. doi:10.1785/gssrl.81.6.928.

    Article  Google Scholar 

  • Ben-Zion, Y., & Shi, Z. Q. (2005). Dynamic rupture on a material interface with spontaneous generation of plastic strain in the bulk. Earth and Planetary Science Letters, 236, 486–496.

    Article  Google Scholar 

  • Boudiaf, A., Ritz, J. F., & Philip, H. (1999). Drainage diversions as evidence of propagating active faults: Example of the El Asnam and Thénia faults, Algeria. Terra Nova, 10, 236–244.

    Article  Google Scholar 

  • Brown, R. D., Vedder, J. G., Wallace, R. E., Roth, E. F., Yerkes, R. F., Castle, R. O., Waanenen, A. O., Page, R. W., & Eaton, J. P. (1967). The Parkfield–Cholame California earthquakes of June–August 1966: Surface geologic effects, water-resources aspects, and preliminary seismic data, U.S. Geol. Surv., Profess. Pap., 579, p. 66.

  • Brune, J. N. (2001). Fault normal dynamic loading and unloading: An explanation for “non-gouge” rock powder and lack of fault-parallel shear bands along the San Andreas Fault. EOS Transactions, American Geophysical Union, 82 (Abstract. #S22B-0655).

  • Brune, J. N., Brown, S., & Johnson, P. A. (1993). Rupture mechanism and interface separation in foam rubber models of earthquakes: A possible solution to the heat-flow paradox and the paradox of large overthrusts. Tectonophysics, 218, 59–67.

    Article  Google Scholar 

  • Caine, J. S., Evans, J. P., & Forster, C. B. (1996). Fault zone architecture and permeability structure. Geology, 11, 1025–1028.

    Article  Google Scholar 

  • Cetin, E., Meghraoui, M., Cakir, Z., Akoglu, A. M., Mimouni, O., & Chebbah, M. (2012). Seven years of postseismic deformation following the 2003 Mw = 6.8 Zemmouri earthquake (Algeria) from InSAR time series. Geophysical Research Letters, 39, L10307. doi:10.1029/2012GL051344.

    Article  Google Scholar 

  • Chambon, G., Schmittbuhl, J., Corfdir, A., Orellana, N., Diraison, M., & Géraud, Y. (2006). The thickness of faults, from laboratory experiments to field scale observations. Tectonophysics, 426, 77–94.

    Article  Google Scholar 

  • Chester, F. M., Evans, J. P., & Biegel, R. L. (1993). Internal structure and weakening mechanisms of the San Andreas fault. Journal Geophysical Research, 98, 771–786.

    Article  Google Scholar 

  • Chester, F. M., & Logan, J. M. (1986). Implications for mechanical properties of brittle faults from observations of the Punchbowl fault zone, California. Internal structure of fault zones. Pure and Applied Geophysics, 124, 77–106.

    Article  Google Scholar 

  • CRAAG. (1994). Les Séismes en Algérie de1365 à 1992. Alger: CRAAG.

    Google Scholar 

  • Dahlin, T., & Zhou, B. (2004). A numerical comparison of 2D resistivity imaging with ten electrode arrays. Geophysical Prospecting, 52, 379–398.

    Article  Google Scholar 

  • de Groot-Hedlin, C. D., & Constable, S. C. (1990). Occam’s inversion to generate smooth, two-dimensional models from magnetotelluric data. Geophysics, 55, 1613–1624.

    Article  Google Scholar 

  • Delouis, B., Vallée, M., Meghraoui, M., Calais, E., Maouche, S., Lammali, K., et al. (2004). Slip distribution of the 2003 Boumerdes–Zemmouri earthquake, Algeria, from teleseismic, GPS, and coastal uplift data. Geophysical Research Letters, 31, L18607. doi:10.1029/2004GL020687.

    Article  Google Scholar 

  • Dor, O., Ben-Zion, Y., Rockwell, T. K., & Brune, J. (2006a). Pulverized rocks in the Mojave section of the San Andreas Fault Zone. Earth and Planetary Science Letters, 245, 642–654.

    Article  Google Scholar 

  • Dor, O., Chester, J. S., Ben-Zion, Y., Brune, J. N., & Rockwell, T. K. (2009). Characterization of damage in sandstones along the Mojave section of the San Andreas Fault: Implications for the shallow extent of damage generation. Pure and Applied Geophysics, 166, 1747–1773.

    Article  Google Scholar 

  • Dor, O., Rockwell, T. K., & Ben-Zion, Y. (2006b). Geological observations of damage asymmetry in the structure of the San Jacinto, San Andreas and Punchbowl faults in Southern California: a possible indicator for preferred rupture propagation direction. Pure and Applied Geophysics, 163, 301–349.

    Article  Google Scholar 

  • Farquharson, C. G., & Oldenburg, D. W. (1998). Nonlinear inversion using general measures of data misfit and model structure. Geophysical Journal International, 134, 213–227.

    Article  Google Scholar 

  • Ficheur, E. (1891). Description stratigraphique de la Kabylie du Djurdjura: étude détaillé des terrains tertiaires. Unpub. Monography.

  • Glangeaud, L. (1932). Etude géologique de la région littorale de la province d’Alger. Thèse sc. Paris et Bull. Serv. Carte géol., Alger, 2eme série, strat, no 8, p. 608.

  • Hellel, M., Oubaiche, E. H., Chatelain, J. L., Machane, D., Bensalem, R., Guiller, B., & Cheikhlounis, G. (2012). Basement mapping with single-station and array ambient vibration data: Delineating faults under Boumerdes City, Algeria. Seismological Research Letters, 83(5). doi:10.1785/0220110142.

  • Jolly, R. J. H., & Lonergan, L. (2002). Mechanisms and controls on the formation of sand intrusions. Journal of the Geological Society, London, 159, 605–617.

    Article  Google Scholar 

  • Lin, J., Stein, R., Meghraoui, M., Toda, S., Ayadi, A., Dorbath, C., et al. (2011). Stress transfer among en echelon and opposing thrusts and tear faults: Triggering caused by the 2003 Mw = 6.9 Zemmouri, Algeria, earthquake. Journal Geophysical Research, 116, B03305. doi:10.1029/2010JB007654.

    Article  Google Scholar 

  • Loke, M. H. (2012). Tutorial: 2-D and 3-D electrical imaging surveys. Malaysia: Geotomo Software.

    Google Scholar 

  • Loke, M. H., & Barker, R. D. (1996). Rapid least-squares inversion of apparent resistivity pseudosections using a quasi-Newton method. Geophysical Prospecting, 44, 131–152.

    Article  Google Scholar 

  • Loke, M. H., & Dahlin, T. (2002). A comparison of the Gauss-Newton and quasi-Newton methods in resistivity imaging inversion. Journal of Applied Geophysics, 49, 149–162.

    Article  Google Scholar 

  • Maouche, S., Meghraoui, M., Morhange, C., Belabbes, S., Bouhadad, Y., & Haddoum, H. (2011). Active coastal thrusting and folding, and uplift rate of the Sahel Anticline and Zemmouri earthquake area (Tell Atlas, Algeria). Tectonophysics, 509, 69–80. doi:10.1016/j.tecto.2011.06.003.

    Article  Google Scholar 

  • Marescot, L. (2006). Introduction à l’imagerie électrique du sous-sol. Bulletin de la Société vaudoise des Sciences naturelles, 90(1), 23–40.

    Google Scholar 

  • Martel, S. J. (1990). Formation of compound strike-slip fault zones, Mount Abbot quadrangle, California. Journal of Structural Geology, 12(7), 869–882.

    Article  Google Scholar 

  • Martel, S. J., Pollard, D. D., & Segall, P. (1988). Development of simple strike-slip fault zones, Mount Abbot quadrangle, Sierra Nevada, California. Geological Society of America Bulletin, 100, 1451–1465.

    Article  Google Scholar 

  • Meghraoui, M. (1988). Géologie des zones sismiques du nord de l’Algérie: Tectonique active, paléosismologie et synthèse sismotectonique. Ph.D. thesis, Univ. de Paris-Sud Orsay, Paris, p. 356.

  • Meghraoui, M., Maouche, S., Chemaa, B., Cakir, Z., Aoudia, A., Harbi, A., et al. (2004). Coastal uplift and thrust faulting associated with the Mw = 6.8 Zemmouri (Algeria) earthquake of 21 May 2003. Geophysical Research Letters, 31(L19605), 4. doi:10.1029/2004GL020466.

    Google Scholar 

  • Micarelli, L., Moretti, I., Jaubert, M., & Moulouel, H. (2006). Fracture analysis in the southwestern Corinth rift (Greece) and implications on fault hydraulic behaviour. Tectonophysics, 426(1–2), 31–59.

    Article  Google Scholar 

  • Mitchell, T. M., Ben-Zion, Y., & Shimamoto, T. (2011). Pulverized fault rocks and damage asymmetry along the Arima-Takatsuki Tectonic Line, Japan. Earth and Planetary Science Letters, 308, 284–297. doi:10.1016/j.epsl.2011.04.023.

    Article  Google Scholar 

  • Morel, J. L., & Meghraoui, M. (1996). The Goringe-Alboran-Tell (Galtel) tectonic zone: A transpression system along the Africa-Eurasia plate boundary. Geology, 24, 755–758.

    Article  Google Scholar 

  • Moulouel, H. (2004). Etude de la fracturation des carbonates à proximité d’une faille normale active à partir des carottes et de diagraphies du puits AIG-10; conséquences sur les propriétés de transfert des zones de faille. Master thesis (in French), Institut Français du Pétrole (IFP) Report 58324, p. 69.

  • Moulouel, H., Micarelli, L., Moretti, I., & Machane, D. (2015). Fracturing of carbonate rocks in the Aigion active normal fault zone (Greece) from borehole cores: implications for fluid transfer properties. Bulletin de la Societe Geologique de France, 186(4), 59–91.

    Google Scholar 

  • Nocquet, J. M., & Calais, E. (2004). Geodetic measurements of crustal deformation in thewestern Mediterranean and Europe. Pure and Applied Geophysics, 161, 661–681.

    Article  Google Scholar 

  • Obermeier, S. (1996). Use of liquefaction-induced features for paleoseismic analysis—an overview of how seismic liquefaction features can be distinguished from other features and how their regional response distribution and properties of source sediment can be used to infer the location and strength of Holocene paleo-earthquake. Engineering Geology, 44, 1–76.

    Article  Google Scholar 

  • Osborne, M. J., & Swarbrick, R. E. (1997). Mechanisms for generating overpressure in sedimentary basins: A re-evaluation. American Association of Petroleum Geologists Bulletin, 81, 1023–1041.

    Google Scholar 

  • Parize, O., Beaudoin, B., Eckert, S., Friès, G., Hadj-Hassen, F., Schneider, F., Su, K., Tijani, M., Trouiller, A., de Fouquet, C., and Vandromme, R. (2006). The Vocontian Aptian and Albian syndepositional clastic sills and dikes: a field-based mechanical approach to predict and model the early fracturing of marly-limy sediments. In AAPG Memoir on sand injection, 87.

  • Parize, O., & Friès, G. (2003). The Vocontian clastic dykes and sills: a geometric model. The Geological Society of London, 216, 51–71.

    Article  Google Scholar 

  • Philip, H., & Meghraoui, M. (1983). Structural analysis and interpretation of the surface deformation of the El Asnam earthquake of October 10, 1980. Tectonics, 2, 17–49.

    Article  Google Scholar 

  • Reches, Z., & Dewers, T. A. (2005). Gouge formation by dynamic pulverization during earth-quake rupture. Earth and Planetary Science Letters, 235, 361–374. doi:10.1016/j.epsl.2005.04.009.

    Article  Google Scholar 

  • Sagy, A., & Korngreen, D. (2012). Dynamic branched fractures in pulverized rocks from a deep borehole. Geology, 40(9), 799–802.

    Article  Google Scholar 

  • Sanderson, D. J., & Marchini, W. R. D. (1984). Transpression. Journal of Structural Geology, 6, 449–458.

    Article  Google Scholar 

  • Schulz, S. E., & Evans, J. P. (2000). Mesoscopic structure of the Punchbowl fault, southern California, and the geological and geophysical structure of active strike-slip faults. Journal of Structural Geology, 22, 913–930.

    Article  Google Scholar 

  • Semmane, F., Benabdeloued, B. Y. N., Beldjoudi, H., & Yelles-Chaouche, A. K. (2015). The 22 February 2014 Mw 4.1 Bordj-Menaiel Earthquake, Near Boumerdes-Zemmouri, North-Central Algeria, Seismological Research Letters, First published on April 15, 2015. doi:10.1785/0220140196.

  • Semmane, F., Campillo, M., & Cotton, F. (2005). Fault location and source process of the Boumerdes, Algeria, earthquake inferred from geodetic and strong motion data. Geophysical Research Letters, 32, L01305. doi:10.1029/2004GL021268.

    Article  Google Scholar 

  • Sibson, R. H. (2003). Thikness of the seismic slip zone. Bulletin of the Seismological Society of America, 93(3), 1169–1178.

    Article  Google Scholar 

  • Sylvester, A. G. (1988). Strick-slip faults. Geological Society of America Bulletin, 100, 1666–1703.

    Article  Google Scholar 

  • Vandromme, R. (2007). Approche des mécanismes de l’injection sableuse per descensum. Ph. D. thesis, Ecole des Mines de Paris, p. 250.

  • Wilson, B., Dewers, T., Reches, Z., & Brune, J. (2005). Particle size and energetics of gouge from earthquake rupture zones. Nature, 434, 749–752.

    Article  Google Scholar 

  • Yagi, Y. (2003). Source process of large and significant earthquakes in 2003. Bulletin of the International Institute of Seismology and Earthquake Engineering, special volume, 145–153.

  • Yassini, I. (1973). Nouvelles données stratigraphiques et microfaunistiques sur la limite Pliocène inférieur-Pliocène moyen (Plaisancien-Astien) dans la région d’Alger. Revue de Micropaléontologie, 16(4), 229–248.

    Google Scholar 

  • Yelles-Chaouche, A. K., Boudiaf, A., Djellit, H., & Bracene, R. (2006). La tectonique active de la région nord-algérienne. Comptes Rendus Geoscience, 338, 126–139.

    Article  Google Scholar 

  • Yielding, G., Ouyed, M., King, G. C. P., & Hatzfeld, D. (1989). Active tectonics of the Algerian Atlas Mountains: Evidence from aftershocks of the 1980 El-Asnam earthquake. Geophysical Journal International, 99(3), 761–788.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Mr. Chaouche of the GEOMICA Company for providing us with boreholes data. Mr. Zidane is thanked for granting us permission to work on building site. Anonymous reviewers are thanked for their constructive review that improved significantly the paper. The authors thank the editorial board for their guidance. This is the Thénia Fault research project supported by the Centre National de Recherche Appliquée en Génie Parasismique (CGS), Algiers, Algeria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hakim Moulouel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moulouel, H., Bensalem, R., Machane, D. et al. High Resistant Sand Injected Marl and Low Resistant Damaged Marl to Locate and Characterize the Thénia Fault Zone in Boumerdes City (North-Central Algeria). Pure Appl. Geophys. 174, 103–115 (2017). https://doi.org/10.1007/s00024-016-1400-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-016-1400-2

Keywords

Navigation