Skip to main content
Log in

Remote Sensing of Atmospheric and Ionospheric Signals Prior to the Mw 8.3 Illapel Earthquake, Chile 2015

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

In the present study, a number of atmospheric and some ionospheric anomalies are analyzed, which were recorded prior to the Mw 8.3 Illapel earthquake of September 16, 2015. This very large earthquake occurred in Central Chile, close to the coast, as the result of thrust faulting on the interface between the Nazca Plate and South American continent. Using remotely sensed data extracted from NASA/Giovanni, NOAA/NCEP, and NOAA/NGDC, atmospheric and ionospheric anomalies were observed that co-registered 35–40 and 25–30 days prior to the main shock, respectively. With reference to long-term time series over the epicentral area, significant atmospheric anomalies were recorded for cloud cover, geopotential height, precipitation rates, surface air pressure, omega, stream function, and wind vectors—all in the time window of August 5–10, 2015, 35–40 days prior to the main shock. Anomalous TEC maps were recorded for the same time period. Satellite images indicate the formation of an unusual cyclone, presumably triggered by air turbulences and abnormal atmospheric conditions over the epicentral area, including strong vertical winds. Data from the Jicamarca radio observatory in Peru, more than 2000 km to the North, reveal anomalous ionospheric variations on August 15–20, 2015 with respect to international reference ionosphere thickness parameters and the altitude of the F layer. The observed anomalies are consistent with processes that occur at the ground-to-air interface due to the stress activation of peroxy defects in the hypocentral volume. The flow of positive hole charge carriers to the Earth surface expected to have led to massive air ionization, generating at first primarily positive airborne ions, then negative air ions plus ozone. Understanding the sequence of processes inside the Earth’s crust and at the ground-to-air interface provides information not previously available about the causal and temporal linkages between the various pre-earthquake phenomena and the future seismic event.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Notes

  1. The Earthquake Preparation Zone was defined by Dobrovolsky et al. (1979) rom empirical observations as a circle around the epicenter of an earthquake assuming that stresses would be able to couple this far within the crust. With the radius of this circle being given as r = 100.43M km, where M is the magnitude. For the Illapel Mw 8.3 event the Earthquake Preparation Zone radius would have reached as far as ~3700 km.

  2. Geospatial Interactive Online Visualization and Analysis Infrastructure.

  3. In atmospheric sciences the term of geopotential height is defined as the actual height of a pressure surface above mean sea-level. Geopotential heights are lower in cold air masses and higher in warm air masses (http://ww2010.atmos.uiuc.edu).

  4. National Aeronautics and Space Administration, Goddard Earth Sciences Data and Information Services Center.

  5. Zonal vector of wind refers to the east–west direction.

  6. Meridional vector of wind refers to the north–south direction.

  7. Air vertical motion.

  8. Asia Pacific Data Research Center Live Access Server.

  9. National Oceanic and Atmospheric Administration, Pacific Marine Environmental Laboratory.

  10. National Oceanic and Atmospheric Administration, National Centers for Environmental Prediction.

  11. Geostationary Operational Environmental Satellite Thermal Infrared.

  12. Space Physics Interactive Data Resource.

  13. National Oceanic and Atmospheric Administration, National Geophysical Data Center.

  14. International GNSS Service.

  15. Global Positioning System.

  16. Total Electron Content.

  17. Global Ionosphere Maps.

  18. IONosphere map EXchange.

  19. Center for Orbit Determination in Europe, University of Berne, Switzerland.

  20. European Space Operations Center of ESA, Darmstadt, Germany.

  21. Jet Propulsion Laboratory, Pasadena, California, USA.

  22. Technical University of Catalonia, Barcelona, Spain.

  23. Dense Regional And Worldwide INternational GNSS-TEC observation.

  24. National Institute of Information and Communications Technology, Japan.

  25. Space Weather Prediction Center.

  26. International Reference Ionosphere.

  27. Receiver Independent Exchange.

  28. Root mean square.

References

  • Afraimovich, E. L., & Astafyeva, E. I. (2008). TEC anomalies—local TEC changes prior to earthquakes or TEC response to solar and geomagnetic activity changes? Earth Planets and Space, 60(9), 961–966.

    Article  Google Scholar 

  • Aleksandrov, N. L., Bazelyan, E. M., Carpenter, R. B., Drabkin, M. M., & Raizer, Y. P. (2001). The effect of coronae on leader initiation and development under thunderstorm conditions and in long air gaps. Journal of Physics D Applied Physics, 34, 3256–3266.

    Article  Google Scholar 

  • Alvan, H. V., Mansor, S., Omar, H., & Azad, F. H. (2014). Precursory signals associated with the 2010 M8.8 Bio-Bio earthquake (Chile) and the 2010 M7.2 Baja California earthquake (Mexico). Arabian Journal of Geosciences, 7(11), 4889–4897.

    Article  Google Scholar 

  • Biemont, E., Fremat, Y., & Quinet, P. (1999). Ionization potentials of atoms and ions from lithium to tin (z = 5-50). Atomic Data and Nuclear Data Tables, 71, 117–146.

    Article  Google Scholar 

  • Blakeslee, R. J., Christian, H. J., & Vonnegut, B. (1989). Electrical measurements over thunderstorms. Journal of Geophysical Research, 95(D11), 135–113, 140.

    Google Scholar 

  • Blecki, J., Parrot, M., & Wronowski, R. (2011). Plasma turbulence in the ionosphere prior to earthquakes, some remarks on the DEMETER registrations. Journal of Asian Earth Sciences, 41, 450–458.

    Article  Google Scholar 

  • Bleier, T., Dunson, C., Maniscalco, M., Bryant, N., Bambery, R., & Freund, F. T. (2009). Investigation of ULF magnetic pulsations, air conductivity changes, and infra red signatures associated with the 30 October 2007 Alum Rock M5.4 earthquake. Natural Hazards and Earth Systems Sciences, 9, 585–603.

    Article  Google Scholar 

  • Chakraborty, M., Kumar, S., De Kumar, B., & Guha, A. (2015). Effects of geomagnetic storm on low latitude ionospheric total electron content: a case study from Indian sector. Journal of Earth System Science, 124(5), 1115–1126.

    Article  Google Scholar 

  • Cicerone, R. D., Ebel, J. E., & Britton, J. (2009). A systematic compilation of earthquake precursors. Tectonophysics, 476(3–4), 371–396.

    Article  Google Scholar 

  • Dobrovolsky, I. P., Zubkov, S. I., & Myachkin, V. I. (1979). Estimation of the size of earthquake preparation zones. Pure and Applied Geophysics, 117, 1025–1044.

    Article  Google Scholar 

  • Freund, F. T. (2003). Rocks that crackle and sparkle and glow: strange pre–earthquake phenomena. Journal of Scientific Exploration, 17(1), 37–71.

    Google Scholar 

  • Freund, F. T. (2011). Pre-earthquake signals: underlying physical processes. Journal of Asian Earth Sciences, 41, 383–400.

    Article  Google Scholar 

  • Freund, F. T. (2013). Earthquake forewarning—a multidisciplinary challenge from the ground up to space. Acta Geophysica, 61(4), 775–807.

    Article  Google Scholar 

  • Freund, F.T. & Freund M.M. (2015a). Paradox of peroxy defects and positive holes in rocks part I: effect of temperature. Journal of Asian Earth Sciences, 114(2), 3730150383.

  • Freund, F. T., & Freund, M. M. (2015b). From where did the water come that filled the earth’s oceans? a widely overlooked redox reaction. American Journal of Analytical Chemistry, 6, 342–349.

    Article  Google Scholar 

  • Freund, F. T., Kulahci, I. G., Cyr, G., Ling, J., Winnick, M., Tregloan-Reed, J., et al. (2009). Air ionization at rock surfaces and pre-earthquake signals. Journal of Atmospheric and Solar Terrestrial Physics, 71(17-18), 1824–1834.

    Article  Google Scholar 

  • Freund, F. T., Takeuchi, A., Lau, B. W. S., Al-Manaseer, A., Fu, C. C., Bryant, N. A., et al. (2007). Stimulated thermal IR emission from rocks: assessing a stress indicator. eEarth, 2, 1–10.

    Article  Google Scholar 

  • Galav, P., Sharma, S., & Pandey, R. (2011). Study of simultaneous penetration of electric fields and variation of total electron content in the day and night sectors during the geomagnetic storm of 23 May 2002. Journal of Geophysical Research Space Physics. doi:10.1029/2011JA017002.

    Google Scholar 

  • Galvan, D. A., Komjathy, A., Hickey, M. P., & Mannucci, A. J. (2011). The 2009 Samoa and 2010 Chile tsunamis as observed in the ionosphere using GPS total electron content. Journal of Geophysical Research. doi:10.1029/2010JA016204.

    Google Scholar 

  • Ganguly, N. D. (2016). Atmospheric changes observed during April 2015 Nepal earthquake. Journal of Atmospheric and Solar Terrestrial Physics, 140, 16–22.

    Article  Google Scholar 

  • Garcia, R., Crespon, F., Ducic, V., & Lognonné, P. (2005). Three-dimensional ionospheric tomography of post-seismic perturbations produced by the Denali earthquake from GPS data. Geophysical Journal International, 163, 1049–1064.

    Article  Google Scholar 

  • Guo, J., Li, W., Liu, X., Kong, Q., Zhao, C., & Guo, B. (2015). Temporal-Spatial Variation of Global GPSDerivedTotal Electron Content, 1999–2013. PLoS One, 10(7), e0133378.

    Article  Google Scholar 

  • Gusman, A. R., Murotani, S., Satake, K., Heidarzadeh, M., Gunawan, E., Watada, S., et al. (2015). Fault slip distribution of the 2014 Iquique, Chile, earthquake estimated from ocean-wide tsunami waveforms and GPS data. Geophysical Research Letters, 42(4), 1053–1060.

    Article  Google Scholar 

  • Hayakawa, M., Kasahara, T. E. Y., Hobara, Y., & Asai, S. (2012). The observation of Doppler shifts of subionospheric LF signal in possible association with earthquakes. Journal of Geophysical Researches, 117, A09304.

    Article  Google Scholar 

  • Hayakawa, M., Kasahara, Y., Nakamura, T., Hobara, Y., Rozhnoi, A., Solovieva, M., et al. (2011). Atmospheric gravity waves as a possible candidate for seismo-ionospheric perturbations. Journal of Atmospheric Electricity, 31(2), 129–140.

    Article  Google Scholar 

  • Hegai, V. V., Kim, V. P., & Liu, J. Y. (2006). The ionospheric effect of atmospheric gravity waves excited prior to strong earthquake. Advances in Space Research, 37, 653–659.

    Article  Google Scholar 

  • Heraud, J. (2014). Pre-earthquake signals at the ground level. In F. Freund & S. Langhoff (Eds.), Universe of Scales: from nanotechnology to cosmology (pp. 133–157). Berlin: Springer.

    Google Scholar 

  • Hirooka, S., Hattori, K., Nishihashi, M., & Takeda, T. (2011). Neural network based tomographic approach to detect earthquake-related ionospheric anomalies. Natural Hazards and Earth System Sciences, 11, 2341–2353.

    Article  Google Scholar 

  • Ho, Y. Y., Jhuang, H. K., Su, Y. C., & Liu, J. Y. (2013a). Seismo-ionospheric anomalies in total electron content of the GIM and electron density of DEMETER before the 27 February 2010 M8.8 Chile earthquake. Advances in Space Research, 51(12), 2309–2315.

    Article  Google Scholar 

  • Ho, Y. Y., Liu, J. Y., Parrot, M., & Pinçon, J. L. (2013b). Temporal and spatial analyses on seismo-electric anomalies associated with the 27 February 2010 M = 8.8 Chile earthquake observed by DEMETER satellite. Natural Hazards and Earth System Sciences, 13(12), 3281–3289.

    Article  Google Scholar 

  • Hsu, S. C., Huang, Y. T., Huang, J. C., Tu, J. Y., Engling, G., Lin, C. Y., et al. (2010). Evaluating real-time air-quality data as earthquake indicator. Science of the Total Environment, 408(11), 2299–2304.

    Article  Google Scholar 

  • Jianyong, L., Jianyong, M., Xinzhao, Y., Rui, Z., Hongbo, S., & Yufei, H. (2015). Ionospheric total electron content disturbance associated with May 12, 2008. Wenchuan Earthquake. Geodesy and Geodynamics, 6(2), 126–134.

    Article  Google Scholar 

  • King, B. V., & Freund, F. T. (1984). Surface charges and subsurface space charge distribution in magnesium oxide containing dissolved traces of water. Physical Review B, 29, 5814–5824.

    Article  Google Scholar 

  • Klimenko, M. V., Klimenko, V. V., Zakharenkova, I. E., Pulinets, S. A., Zhao, B., & Tsidilina, M. N. (2011). Formation mechanism of great positive TEC disturbances prior to Wenchuan earthquake on May 12, 2008. Advances in Space Research, 48, 488–499.

    Article  Google Scholar 

  • Kumar, S., & Singh, A. K. (2011). GPS derived ionospheric TEC response to geomagnetic storm on 24 August 2005 at Indian low latitude stations. Advances in Space Research, 47, 710–717.

    Article  Google Scholar 

  • Liu, J. Y., Chen, Y. I., Chuo, Y. J., & Chen, C. S. (2006). A statistical investigation of pre-earthquake ionospheric anomaly. Journal of Geophysical Research Space Physics. doi:10.1029/2005JA011333.

    Google Scholar 

  • Liu, J. Y., Chuo, Y. J., Shan, S. J., Tsai, Y. B., Chen, Y. I., Pulinets, S. A., et al. (2004). Pre-earthquake ionospheric anomalies registered by continuous GPS TEC measurements. Annales Geophysicae, 22, 1585–1593.

    Article  Google Scholar 

  • Lizunov, G., & Hayakawa, M. (2004). Atmospheric gravity waves and their role in the lithosphere-troposphere-ionosphere interaction. IEEJ Transactions on Fundamentals and Materials A, 124, 12.

    Article  Google Scholar 

  • Mansouri Daneshvar, Tavousi, T., & Khosravi, M. (2014). Synoptic detection of the short-term atmospheric precursors prior to a major earthquake in the Middle East, North Saravan M 7.8 earthquake, SE Iran. Air Quality and Atmosphere Health, 7(1), 29–39.

    Article  Google Scholar 

  • Mansouri Daneshvar, M. R., Tavousi, T., & Khosravi, M. (2015). Atmospheric blocking anomalies as the synoptic precursors prior to the induced earthquakes; a new climatic conceptual model. International Journal of Environmental Science and Technology, 12(5), 1705–1718.

    Article  Google Scholar 

  • Mukhtarov, P., Andonov, B., & Pancheva, D. (2013). Global empirical model of TEC response to geomagnetic activity. Journal of Geophysical Research Space Physics, 118, 1–20.

    Article  Google Scholar 

  • Ouzounov, D., Liu, D., Chunli, K., Cervone, G., Kafatos, M., & Taylor, P. (2007). Outgoing long wave radiation variability from IR satellite data prior to major earthquakes. Tectonophysics, 431(1–4), 211–220.

    Article  Google Scholar 

  • Pedatella, N. M., Lei, J., Larson, K. M., & Forbes, J. M. (2009). Observations of the ionospheric response to the 15 December 2006 geomagnetic storm: long-duration positive storm effect. Journal of Geophysical Research Space Physics. doi:10.1029/2009JA014568.

    Google Scholar 

  • Piroddi, L., & Ranieri, G. (2012). Night thermal gradient: a new potential tool for earthquake precursors studies. An application to the seismic area of L’Aquila (Central Italy). Selected Topics in Applied Earth Observations and Remote Sensing, 5(1), 307–312.

    Article  Google Scholar 

  • Píša, D., Parrot, M., & Santolík, O. (2011). Ionospheric density variations recorded before the 2010 Mw 8.8 earthquake in Chile. Journal of Geophysical Research. doi:10.1029/2011JA016611.

    Google Scholar 

  • Pulinets, S. A., & Boyarchuk, K. (2004). Ionospheric precursors of earthquakes (p. 316). Berlin: Springer.

    Google Scholar 

  • Pulinets, S. A., & Davidenko, K. (2014). Ionospheric precursors of earthquakes and global electric circuit. Advances in Space Research, 53(5), 70–723.

    Article  Google Scholar 

  • Pulinets, S. A., & Ouzounov, D. (2011). Lithosphere-atmosphere-ionosphere coupling (LAIC) model—an unified concept for earthquake precursors validation. Journal of Asian Earth Sciences, 41(4–5), 371–382.

    Article  Google Scholar 

  • Pulinets, S. A., Ouzounov, D., Karelin, A., & Davidenko, D. (2014). Physical bases of the generation of short-term earthquake precursors: a complex model of ionization-induced geophysical processes in the lithosphere–atmosphere–ionosphere–magnetosphere system. Geomagnetism and Aeronomy, 55(4), 522–539.

    Google Scholar 

  • Pulinets, S. A., Romanov, A. A., Urlichich, Y. M., Romanov, A., Doda, L. N., & Ouzounov, D. (2009). The first results of the pilot project on complex diagnosing earthquake precursors on Sakhalin. Geomagnetism and Aeronomy, 49(1), 115–123.

    Article  Google Scholar 

  • Qin, K., Wu, L., Liu, S., De Santis, A., & Cianchini, G. (2012). Mechanisms and relationship to soil moisture of surface latent heat flux anomaly before Inland earthquakes. In Proceeding of geoscience and remote sensing symposium (IGARSS), IEEE.

  • Rozhnoi, A., Solovieva, M., Molchanov, O. A., Biagi, P. F., & Hayakawa, M. (2007). Observation evidences of atmospheric Gravity Waves induced by seismic activity from analysis of subionospheric LF signal spectra. Natural Hazards and Earth System Science, 7, 625–628.

    Article  Google Scholar 

  • Rycroft, M. J., & Harrison, R. G. (2012). Electromagnetic atmosphere-plasma coupling: the global electric circuit. Space Science Reviews, 168(1–4), 363–384.

    Article  Google Scholar 

  • Rycroft, M. J., Harrison, R. G., Nicoll, K. A., & Mareev, E. A. (2008). An overview of Earth’s global electric circuit and atmospheric conductivity. Space Science Reviews, 137(1–4), 83–105.

    Article  Google Scholar 

  • Sapkota, B. K., & Varshneya, N. C. (1990). On the global atmospheric electrical circuit. Journal of Atmospheric and Solar Terrestrial Physics, 52(1), 1–20.

    Article  Google Scholar 

  • Schaer, S., Gurtner, W., & Feltens, J. (1998). IONEX: the IONosphere map exchange format version 1. In Proceedings of the 1998 IGS analysis centers workshop, ESOC, Darmstadt, Germany.

  • Scoville, J., Sornette, J., & Freund, F. T. (2015). Paradox of peroxy defects and positive holes in rocks Part II: outflow of electric currents from stressed rocks. Journal of Asian Earth Sciences, 114(2), 338–351.

    Article  Google Scholar 

  • Silva, H. G., Bezzeghoud, M., Reis, A. H., Rosa, R. N., Tlemçani, M., Araújo, A. A., et al. (2011). Atmospheric electrical field decrease during the M = 4.1 Sousel earthquake (Portugal). Natural Hazards and Earth System Sciences, 11, 987–991.

    Article  Google Scholar 

  • Singh, A. K., Siingh, D., Singh, R. P., & Mishra, S. (2011). Electrodynamical coupling of earth’s atmosphere and ionosphere: an overview. International Journal of Geophysics, 971302, 971313.

    Google Scholar 

  • Sykes, L. R., Shaw, B. E., & Scholz, C. H. (1999). Rethinking earthquake prediction. Pure and Applied Geophysics, 155, 207–232.

    Article  Google Scholar 

  • Takagi, M., & Kanada, M. (1972). Global variation in the atmospheric electric field. Pure and Applied Geophysics, 100(1), 44–53.

    Article  Google Scholar 

  • Thomas, J. N., Holzworth, R. H., & McCarthy, M. P. (2009). In situ measurements of contributions to the global electrical circuit by a thunderstorm in southeastern Brazil. Atmospheric Research, 91, 153–160.

    Article  Google Scholar 

  • Tyrtyshinikov, A. V. (1996). The variations of ozone content in the atmosphere above strong earthquake epicenters. Physics of the Solid Earth, 31(9), 789–794.

    Google Scholar 

  • United States Geological Survey (2015). Technical report of M8.3–48 km W of Illapel, Chile 2015-09-16 22:54:32 UTC. United States Geological Survey.

  • Walia, V., Virk, H. S., & Bajwa, B. S. (2006). Radon precursory signals for some earthquakes of magnitude >5 occurred in N–W Himalaya: an overview. Pure and Applied Geophysics, 163(4), 711–721.

    Article  Google Scholar 

  • Yada, N., & Saito, Y. (2012). Precursor observed by movements of aero-ionization measurement prior to the pacific coast of Tohoku earthquake in 2011. In EMSEV 2012, edited, p 5, Gotemba, Japan

  • Yagi, Y., Okuwaki, R., Enescu, B., Hirano, S., Yamagami, Y., Endo, S., et al. (2014). Rupture process of the 2014 Iquique Chile Earthquake in relation with the foreshock activit. Geophysical Research Letters, 41(2), 4201–4206.

    Article  Google Scholar 

  • Zhang, X., Zeren, Z., Parrot, M., Battiston, R., Qian, J., & Shen, X. (2011). ULF/ELF ionospheric electric field and plasma perturbations related to Chile earthquakes. Advances in Space Research, 47(6), 991–1000.

    Article  Google Scholar 

  • Zlotnicki, J., Li, F., & Parrot, M. (2012). Ionospheric disturbances recorded by DEMETER satellite over active volcanoes: from August 2004 to December 2010. International Journal of Geophysics, 2013, 1–17. (ID 530865, 530817).

Download references

Acknowledgments

We wish to acknowledge the NASA and NOAA online data centers for global transmission of reanalysis data. Friedemann T. Freund acknowledges support from the NASA ESI grant NNX12AL71G through the San Jose State University Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Mansouri Daneshvar.

Additional information

This paper is part of the article collection on “Illapel, Chile, Earthquake on September 16th, 2015”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansouri Daneshvar, M.R., Freund, F.T. Remote Sensing of Atmospheric and Ionospheric Signals Prior to the Mw 8.3 Illapel Earthquake, Chile 2015. Pure Appl. Geophys. 174, 11–45 (2017). https://doi.org/10.1007/s00024-016-1366-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-016-1366-0

Keywords

Navigation