Pure and Applied Geophysics

, Volume 174, Issue 6, pp 2257–2267 | Cite as

Stress Distribution Near the Seismic Gap Between Wenchuan and Lushan Earthquakes

  • Yihai Yang
  • Chuntao Liang
  • Zhongquan Li
  • Jinrong Su
  • Lu Zhou
  • Fujun He


The Wenchuan M S 8.0 earthquake and Lushan M S 7.0 earthquake unilaterally fractured northeastward and southwestward, respectively, along the Longmenshan fault belt. The aftershock areas of the two earthquakes were separated by a gap with a length of nearly 60 km. We have determined the focal mechanisms of 471 earthquakes with magnitude M ≥ 3 from Jan 2008 to July 2014 near the seismic gap using a full waveform inversion method. Normal, thrust and strike-slip focal mechanisms can be found in northern segment. But in a significant contrast, focal mechanisms of the earthquakes in the southern segment are dominated by thrust faulting. Based on the determined source parameters, we further apply a damped linear inversion method to derive the regional stress field. The southern segment is characterized by an obvious thrust faulting stress regime with a nearly horizontal maximum compression that orients in SE–NW direction. The stress environment in the northern segment is a lot more complicated. The maximum compressional stresses appear to rotate around the “asperity” near west of the Dujiangyan city. Stress field also shows strong variation with time and depth. Before 2009, the seismic activities are more concentrated on the Pengxian–Guanxian fault and Yingxiu–Beichuan fault with dominant strike-slip faulting and normal faulting, while after 2009, the seismic activities are dominated by thrust faulting from north to south, while the activities are more concentrated on the Wenchuan–Maoxian fault in northern segment and Pengxian–Guanxian fault in southern segment. The maximum compressional stresses vary in different depths from north to south, thus may imply the decoupled movement in shallow and in depth.


Wenchuan earthquake Lushan earthquake seismic gap focal mechanism stress field 



We appreciate Mian Liu and one anonymous reviewer for their constructive comments and suggestions that have helped to improve this paper. This work was partially supported by National Natural Science Foundation of China (41340009), Sichuan Science and Technology Support Plan (2015RZ0032, 2015SZ0224) and the Creative Team Plan of Chengdu University of Technology.


  1. Bai, D. H., Unsworth, M. J., Meju, M. A., Ma, X. B., Teng, J. W., Kong, X. R., et al. (2010). Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging. Nature Geoscience, 3, 358–362. doi: 10.1038/NGEO830.CrossRefGoogle Scholar
  2. Chen, J. H., Liu, Q. Y., Li, S. C., Guo, B., Li, Y., Wang, J., et al. (2009). Seismotectonic study by relocation of the Wenchuan M S 8.0 earthquake sequence. China Journal Geophysics, 52(2), 390–397.CrossRefGoogle Scholar
  3. Chen, Y. T., Yang, Z. X., Zhang, Y., & Liu, C. (2013). From 2008 Wenchuan earthquake to 2013 Lushan earthquake. Sci. China Earth Sci., 43(6), 1064–1072. (in Chinese).Google Scholar
  4. Fang, L. H., Wu, J. P., Wang, W. L., Du, W. K., Su, J. R., Wang, C. Z., et al. (2015). Aftershock observation and analysis of the 2013 M S7.0 Lushan earthquake. Seismological Research Letters, 86(4), 1135–1142.CrossRefGoogle Scholar
  5. Gan, W. J., Zhang, P. Z., Shen, Z. K., Niu, Z. J., Wang, M., Wang, Y. G., et al. (2007). Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements. Journal of Geophysical Research: Solid Earth, 112, B08416.Google Scholar
  6. Gao, Y., Wang, Q., Zhao, B., & Shi, Y. T. (2014). A rupture blank zone in middle south part of Longmenshan faults: effect after Lushan M s 7.0 earthquake of 20, April 2013 in Sichuan, China. Science China Earth Sciences, 57(9), 2036–2044.CrossRefGoogle Scholar
  7. Han, L. B., Zeng, X. F., Jiang, C. S., Ni, S. D., Zhang, H. J., & Long, F. (2014). Focal mechanism of the 2013 MW 6.6 Lushan, China earthquake and high-resolution aftershock relocations. Seismological Research Letters, 85(1), 8–14.CrossRefGoogle Scholar
  8. Hardebeck, J. L., & A. J. Michael (2004). Stress orientations at intermediate angles to the San Andreas fault, California, Journal of Geophysical Research, 109, no B11303. doi: 10.1029/2004JB003239.
  9. Hardebeck, J. L., & A. J. Michael (2006). Damped regional-scale stress inversions: methodology and examples for southern California and the Coalinga aftershock sequence, Journal of Geophysical Research, 111, no. B11310. doi: 10.1029/2005JB004144.
  10. Herrmann, R. B. (2014). Computer programs in seismology, Version 3.30, (last accessed Dec 2015).
  11. Herrmann, R. B., Malagnini, L., & Munafò, I. (2011). Regional Moment Tensors of the 2009 L’Aquila Earthquake Sequence. Bulletin of the Seismological Society of America, 101(3), 975–993.CrossRefGoogle Scholar
  12. Huang, R. Q., Wang, Z., Pei, S. P., & Wang, Y. S. (2009). Crustal ductile flow and its contribution to tectonic stress in Southwest China. Tectonophysics, 473, 476–489.CrossRefGoogle Scholar
  13. Langston, C. A. (1979). Structure under Mount Rainier, Washington, inferred from teleseismic body waves. J. Geophy. Res., 84(B9), 4749–4762.CrossRefGoogle Scholar
  14. Li, Z. W., Tian, B. F., Liu, S., & Yang, J. S. (2013). Asperity of the 2013 Lushan earthquake in the eastern margin of Tibetan Plateau from seismic tomography and aftershock relocation. Geophysical Journal International, 195, 2016–2022. doi: 10.1093/gji/ggt370.CrossRefGoogle Scholar
  15. Liang, C. T., & Song, X. D. (2004). Tomographic inversion of Pn travel times in China. Journal Geophysical Research, 109, B11304. doi: 10.1029/2003JB002789.Google Scholar
  16. Liu, M., Luo, G., & Wang, H. (2014). The 2013 Lushan earthquake in China tests hazard assessments. Seismological Research Letters, 85(1), 40–43.CrossRefGoogle Scholar
  17. Lü, J., Su, J. R., Jin, Y. K., Long, F., Yang, Y. Q., Zhang, Z. W., et al. (2008). Discussion on relocation and seismo-tectonics of the M S 8.0 Wenchuan earthquake sequences. Seismology and Geology, 30(4), 917–925.Google Scholar
  18. Luo, Y., Zhao, L., Zeng, X. F., & Gao, Y. (2015). Focal mechanisms of the Lushan earthquake sequence and spatial variation of the stress field. Science China Earth Science, 58(7), 1148–1158. doi: 10.1007/s11430-014-5017-y.CrossRefGoogle Scholar
  19. Martínez-Garzón, P., Kwiatek, G., Ickrath, M., & Bohnhoff, M. (2014). MSATSI: A MATLAB© package for stress inversion combining solid classic methodology, a new simplified user-handling and a visualization tool. Seismological Research Letters, 85(4), 896–904. doi: 10.1785/0220130189.CrossRefGoogle Scholar
  20. Pei, S. P., H. J. Zhang, J. R. Su, and Z. X. Cui (2014). Ductile gap between the Wenchuan and Lushan earthquakes revealed from the two-dimensional Pg seismic tomography. Sci. Rep. 4, 6489. doi: 10.1038/srep06489.
  21. Wang, Z., J. R. Su, C. X. Liu, and X. L. Cai (2015). New insights into the generation of the 2013 Lushan Earthquake (M s 7.0), China. J. Geophys. Res. 120, 3507–3526, doi: 10.1002/2014JB011692.
  22. Wang, H., Liu, M., Shen, X. H., & Liu, J. (2010). Balance of seismic moment in the Songpan-Ganze region, eastern Tibet: implications for the 2008 Geat Wenchuan earthquake. Tectonophysics, 491, 154–164.CrossRefGoogle Scholar
  23. Wessel, P., and W. H. F. Smith (1995). New version of Generic Mapping Tools released, Eos Trans. AGU 76, p. 329.Google Scholar
  24. Xu, Z. H. (2001). A present-day tectonic stress map for eastern Asia region. Acta Seismologica Sinica, 23, 492–501. (in Chinese).Google Scholar
  25. Xu, Y., Herrmann, R. B., & Koper, D. K. (2010). Source parameters of regional small-to-moderate earthquakes in the Yunnan-Sichuan Region of China. Bulletin of the Seismological Society of America, 100, 2518–2531. doi: 10.1785/0120090195.CrossRefGoogle Scholar
  26. Xu, Z. Q., Ji, S. C., Li, H. B., Hou, L. W., Fu, X. F., & Cai, Z. H. (2008a). Uplift of the Longmenshan range and the Wenchuan earthquake. Episodes, 31, 291–301.Google Scholar
  27. Xu, X. W., Wen, X. Z., Han, Z. J., Chen, G. H., Li, C. Y., Zheng, W. J., et al. (2013). Lushan M s 7.0 earthquake: a blind reserve-fault earthquake. Chinese Science Bulletin, 58(20), 1887–1893. doi: 10.1007/s11434-013-5999-4. (in Chinese).CrossRefGoogle Scholar
  28. Xu, J. R., Zhao, Z. X., & Ishikawa, Yuzo. (2008b). Regional characteristics of crustal stress field and tectonic motions and around Chinese mainland. Chinese Journal of Geophysics, 51(3), 770–781.Google Scholar
  29. Yang, Y. H., Liang, C. T., & Su, J. R. (2015). Focal mechanism inversion based on regional model inverted from receiver function and its application to the Lushan earthquake sequence. Chinese Journal of Geophysics, 58(10), 3583–3600. doi: 10.6038/cjg20151013. (in Chinese).Google Scholar
  30. Yi, G.X., Long, F., and Zhang, Z.W. (2012). Spatial and temporal variation of focal mechanisms for aftershocks of the 2008 M s 80 Wenchuan earthquake. Chin. J. Geophys. 55, no. 4, 1213-1227, doi: 10.6038/j.issn.0001-5733.2012.04.017.
  31. Zhang, P. Z., Shen, Z. K., Wang, M., Gan, W. J., Bürgmann, R., Molnar, P., et al. (2004). Continuous deformation of the Tibetan Plateau from global positioning system data. Geology, 32(9), 809–812.CrossRefGoogle Scholar
  32. Zhao, L., Luo, Y., Liu, T. Y., & Luo, Y. J. (2013). Earthquake Focal Mechanisms in Yunnan and their Inference on the Regional Stress Field. Bulletin of the Seismological Society of America, 103(4), 2498–2507. doi: 10.1785/0120120309.CrossRefGoogle Scholar
  33. Zhao, G. Z., Unsworth, M. J., Zhan, Y., Wang, L. F., Chen, X. B., Jones, A. G., et al. (2012). Crustal structure and rheology of the Longmenshan and Wenchuan Mw 7.9 earthquake epicentral area from magnetotelluric data. Geology, 40(12), 1139–1142. doi: 10.1130/G33703.1.CrossRefGoogle Scholar
  34. Zhu, A. L., Xu, X. W., Diao, G. L., Su, J. R., Feng, X. D., Sun, Q., et al. (2008). Relocation of the MS 8.0 Wenchuan earthquake sequence in part: preliminary seismotectonic analysis. Seismology and Geology, 30(3), 759–767.Google Scholar
  35. Zhu, J. S., Zhao, J. M., Jiang, X. T., Fan, J., & Liang, C. T. (2012). Crustal flow beneath the eastern margin of the Tibetan plateau. Earthquake Science, 25, 469–483. doi: 10.1007/s11589-012-0871-1.CrossRefGoogle Scholar
  36. Zoback, M. L. (1992). First- and second-order patterns of stress in the lithosphere: the world stress map project. Journal of Geophysical Research, 97(B8), 11703–11728.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  • Yihai Yang
    • 1
    • 2
  • Chuntao Liang
    • 1
    • 2
  • Zhongquan Li
    • 3
    • 4
  • Jinrong Su
    • 5
  • Lu Zhou
    • 1
    • 2
  • Fujun He
    • 1
    • 2
  1. 1.State Key Laboratory of Geohazard Prevention and Geoenviroment ProtectionChengdu University of TechnologyChengduChina
  2. 2.Key Laboratory of Earth Exploration and Information Technique of Education Ministry of ChinaChengdu University of TechnologyChengduChina
  3. 3.State Key Laboratory of Oil and Gas Reservoir Geology and ExploitationChengdu University of TechnologyChengduChina
  4. 4.Key Laboratory of Tectonic Controlled Mineralization and Oil Reservoir, Ministry of Land and ResourcesChengdu University of TechnologyChengduChina
  5. 5.Earthquake Administration of Sichuan ProvinceChengduChina

Personalised recommendations