Deriving Sensitivity Kernels of Coda-Wave Travel Times to Velocity Changes Based on the Three-Dimensional Single Isotropic Scattering Model

Abstract

Recently, coda-wave interferometry has been used to monitor temporal changes in subsurface structures. Seismic velocity changes have been detected by coda-wave interferometry in association with large earthquakes and volcanic eruptions. To constrain the spatial extent of the velocity changes, spatial homogeneity is often assumed. However, it is important to locate the region of the velocity changes correctly to understand physical mechanisms causing them. In this paper, we are concerned with the sensitivity kernels relating travel times of coda waves to velocity changes. In previous studies, sensitivity kernels have been formulated for two-dimensional single scattering and multiple scattering, three-dimensional multiple scattering, and diffusion. In this paper, we formulate and derive analytical expressions of the sensitivity kernels for three-dimensional single-scattering case. These sensitivity kernels show two peaks at both source and receiver locations, which is similar to the previous studies using different scattering models. The two peaks are more pronounced for later lapse time. We validate our formulation by comparing it with finite-difference simulations of acoustic wave propagation. Our formulation enables us to evaluate the sensitivity kernels analytically, which is particularly useful for the analysis of body waves from deeper earthquakes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Furumura, T., & Chen, L. (2004). Large scale parallel simulation and visualization of 3-D seismic wavefield using Earth simulator. Computer Modeling in Engineering and Sciences, 6, 153–168.

    Google Scholar 

  2. Hobiger, M., Wegler, U., Shiomi, K., & Nakahara, H. (2012). Coseismic and postseismic elastic wave velocity variations caused by the 2008 Iwate-Miyagi Nairiku earthquake, Japan. Journal Geophysical Research, 117, B09313. doi:10.1029/2012jb009402.

    Article  Google Scholar 

  3. Kanu, C., & Snieder, R. (2015). Time-lapse imaging of a localized weak change with multiply scattered waves using numerical-based sensitivity kernel. Journal Geophysical Research, 120, 5595–5605. doi:10.1002/2015JB011871.

    Google Scholar 

  4. Larose, E., Planes, T., Rossetto, V., & Margerin, L. (2010). Locating a small change in a multiple scattering environment. Applied Physics Letters, 96(20), 204101. doi:10.1063/1.3431269.

    Article  Google Scholar 

  5. Maeda, T. (2007). Sensitivity kernel of coda envelopes (in Japanese). Paper Presented at the Seismic Scattering Workshop, University of Tokyo, Tokyo, 25–26 September 2007, http://wwweic.eri.u-tokyo.ac.jp/viewdoc/scat2007/14-maeda.pdf.

  6. Margerin, L., Planes, T., Mayol, J., & Calvet, M. (2016). Sensitivity kernels for coda-wave interferometry and scattering tomography: theory and numerical evaluation in two-dimensional anisotropically scattering media. Geophysical Journal International, 204, 650–666.

    Article  Google Scholar 

  7. Morse, P. M., & Feshbach, H. (1953). Methods of theoretical physics (Vol. I). New York: McGraw-Hill.

    Google Scholar 

  8. Nishimura, T., Uchida, N., Sato, H., Ohtake, M., Tanaka, S., & Hamaguchi, H. (2000). Temporal changes of the crustal structure associated with the M6.1 earthquake on September 3, 1998, and the volcanic activity of Mount Iwate, Japan. Geophysical Research Letters, 27(2), 269–272.

    Article  Google Scholar 

  9. Obermann, A., Planes, T., Larose, E., & Campillo, M. (2013a). Imaging preeruptive and coeruptive structural and mechanical changes of a volcano with ambient seismic noise. Journal Geophysical Research, 118, 6285–6294.

    Google Scholar 

  10. Obermann, A., Planes, T., Larose, E., Sens-Schonfelder, C., & Campillo, M. (2013b). Depth sensitivity of seismic coda waves to velocity perturbations in an elastic heterogeneous medium. Geophysical Journal International, 194(1), 372–382.

    Article  Google Scholar 

  11. Pacheco, C., & Snieder, R. (2005). Time-lapse travel time change of multiply scattered acoustic waves. Journal of the Acoustic Society of America, 118(3), 1300–1310.

    Article  Google Scholar 

  12. Pacheco, C., & Snieder, R. (2006). Time-lapse traveltime change of singly scattered acoustic waves. Geophysical Journal International, 165(2), 485–500.

    Article  Google Scholar 

  13. Poupinet, G., Ellsworth, W. L., & Frechet, J. (1984). Monitoring velocity variations in the crust using earthquake doublets—An application to the Calaveras fault, California. Journal Geophysical Research, 89, 5719–5731.

    Article  Google Scholar 

  14. Ratdomopurbo, A., & Poupinet, G. (1995). Monitoring a temporal change of seismic velocity in a volcano—Application to the 1992 eruption of Mt-Merapi (Indonesia). Geophysical Reseach Letters, 22(7), 775–778.

    Article  Google Scholar 

  15. Rossetto, V., Margerin, L., Planes, T., & Larose, E. (2011). Locating a weak change using diffuse waves: Theoretical approach and inversion procedure. Journal of Applied Physics, 109(3), 034903. doi:10.1063/1.3544503.

    Article  Google Scholar 

  16. Sato, H. (1977). Energy propagation including scattering effect: Single isotropic scattering approximation. Journal of Physics of the Earth, 25, 27–41.

    Article  Google Scholar 

  17. Sato, H., Fehler, M. C., & Maeda, T. (2012). Seismic wave propagation and scattering in the heterogeneous earth (2nd ed.). Berlin: Springer.

    Book  Google Scholar 

  18. Shapiro, N. M., Campillo, M., Stehly, L., & Ritzwoller, M. H. (2005). High-resolution surface-wave tomography from ambient seismic noise. Science, 307, 1615–1618.

    Article  Google Scholar 

  19. Snieder, R., Gret, A., Douma, H., & Scales, J. (2002). Coda wave interferometry for estimating nonlinear behavior in seismic velocity. Science, 295(5563), 2253–2255.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by Grant-in-Aid for Scientific Research (C) (16K05528) from Japan Society for the Promotion of Science (JSPS) and the Ministry of Education, Culture, Sports, Science and Technology (MEXT). Computations were conducted on the Earth Simulator at the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) under the support of a joint research project between Earthquake Research Institute, the University of Tokyo, and Center of Earth Information Science and Technology entitled “Numerical simulations of seismic- and tsunami-wave propagation in 3D heterogeneous earth”.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hisashi Nakahara.

Appendix

Appendix

We show how to evaluate the infinitesimal volume element in the prolate spheroidal coordinate shown in Fig. 9. We extend 2D configuration of Pacheco and Snieder (2006) to 3D configuration. The infinitesimal areal element dA at x (a point of velocity change) is expressed as:

$$ {\text{d}}A({\mathbf{x}}) = {\text{d}}l{\text{d}}e\frac{s}{{r_{\text{s}} }}\sin \phi . $$
(26)
Fig. 9
figure9

An elliptical coordinate on which a source, a receiver, a point of velocity change, and a scatterer are located for calculating the infinitesimal areal element dA

Here, de is defined along a spheroidal scattering shell and calculated as:

$$ \begin{aligned} {\text{d}}e &= \sqrt {\left( {\frac{{\partial x_{\text{bs}} }}{\partial \theta }} \right)^{2} + \left( {\frac{{\partial y_{\text{bs}} }}{\partial \theta }} \right)^{2} + \left( {\frac{{\partial z_{\text{bs}} }}{\partial \theta }} \right)^{2} } {\text{d}}\theta \hfill \\ &= h\sqrt {\varepsilon^{2} \sin^{2} \theta + (\varepsilon^{2} - 1)\cos^{2} \theta } {\text{d}}\theta \hfill \\ & = h\sqrt {\varepsilon^{2} - \cos^{2} \theta } {\text{d}}\theta = h\sqrt {\left( {\frac{{v_{0} t}}{2h}} \right)^{2} - \cos^{2} \theta } {\text{d}}\theta . \hfill \\ \end{aligned} $$
(27)

Note that \( {\mathbf{x}}_{{{\mathbf{bs}}}} = (x_{\text{bs}} ,\,y_{\text{bs}} ,\,z_{\text{bs}} ) \) is the location of a scatterer on the scattering shell for the path ls. In the derivation, the following relations are used:

$$ \begin{aligned} &\frac{{{\partial}x_{\text{bs}} }}{{{\partial}\theta }} = \frac{\partial}{{{\partial}\theta }}\left( {h\varepsilon \cos \theta } \right) = - h\varepsilon \sin \theta , \hfill \\ &\frac{{{\partial}y_{\text{bs}} }}{{{\partial}\theta }} = \frac{\partial}{{{\partial}\theta }}\left( {h\sqrt {\varepsilon^{2} - 1} \sin \theta \cos \psi } \right) = h\sqrt {\varepsilon^{2} - 1} \cos \theta \cos \psi \hfill \\ &\frac{{{\partial}z_{\text{bs}} }}{{{\partial}\theta }} = \frac{\partial}{{{\partial}\theta }}\left( {h\sqrt {\varepsilon^{2} - 1} \sin \theta \sin \psi } \right) = h\sqrt {\varepsilon^{2} - 1} \cos \theta \sin \psi . \hfill \\ \end{aligned} , $$
(28)

The unit vector n directing away from the source along the path ls is:

$$ {\mathbf{n}} = \frac{1}{{\sqrt {(h + x_{\text{bs}} )^{2} + y_{\text{bs}}^{2} + z_{\text{bs}}^{2} } }}\left( {\begin{array}{*{20}c} {h + x_{\text{bs}} } \\ {y_{\text{bs}} } \\ {z_{\text{bs}} } \\ \end{array} } \right) = \frac{1}{\varepsilon + \cos \theta }\left( {\begin{array}{*{20}c} {\varepsilon \cos \theta + 1} \\ {\sqrt {\varepsilon^{2} - 1} \sin \theta \cos \psi } \\ {\sqrt {\varepsilon^{2} - 1} \sin \theta \sin \psi } \\ \end{array} } \right) . $$
(29)

The unit vector e directing along the edge of the ellipse is:

$$ \,{\mathbf{e}} = \frac{1}{{\sqrt {\left( {\frac{{\partial x_{\text{bs}} }}{\partial \theta }} \right)^{2} + \left( {\frac{{\partial y_{\text{bs}} }}{\partial \theta }} \right)^{2} + \left( {\frac{{\partial z_{\text{bs}} }}{\partial \theta }} \right)^{2} } }}\left( {\begin{array}{*{20}c} {\frac{{\partial x_{\text{bs}} }}{\partial \theta }} \\ {\frac{{\partial y_{\text{bs}} }}{\partial \theta }} \\ {\frac{{\partial z_{\text{bs}} }}{\partial \theta }} \\ \end{array} } \right) = \frac{1}{{\sqrt {\varepsilon^{2} - \cos^{2} \theta } }}\left( {\begin{array}{*{20}c} { - \varepsilon \sin \theta } \\ {\sqrt {\varepsilon^{2} - 1} \cos \theta \cos \psi } \\ {\sqrt {\varepsilon^{2} - 1} \cos \theta \sin \psi } \\ \end{array} } \right) . $$
(30)

The term of \( \,\sin \phi \) can be calculated using the vector product between n and e as:

$$ \sin \phi = |{\mathbf{n}} \times {\mathbf{e}}| = \frac{{\sqrt {\varepsilon^{2} - 1} }}{{\sqrt {\varepsilon^{2} - \cos^{2} \theta } }} = \frac{{\sqrt {\left( {\frac{{v_{0} t}}{2h}} \right)^{2} - 1} }}{{\sqrt {\left( {\frac{{v_{0} t}}{2h}} \right)^{2} - \cos^{2} \theta } }} . $$
(31)

Equations (26), (27), (31), (7) and (10) give the volume element dV at x as:

$$ {\text{d}}V({\mathbf{x}}) = h^{2} \left\{ {\left( {\frac{{v_{0} t}}{2h}} \right)^{2} - 1} \right\}\frac{s}{{r_{\text{s}} }}\sin \theta \;{\text{d}}\theta {\text{d}}l{\text{d}}\psi . $$
(32)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nakahara, H., Emoto, K. Deriving Sensitivity Kernels of Coda-Wave Travel Times to Velocity Changes Based on the Three-Dimensional Single Isotropic Scattering Model. Pure Appl. Geophys. 174, 327–337 (2017). https://doi.org/10.1007/s00024-016-1358-0

Download citation

Keywords

  • Sensitivity kernel
  • coda waves
  • velocity change
  • single scattering