Pure and Applied Geophysics

, Volume 173, Issue 12, pp 4039–4054

Tsunami Bores in Kitakami River

Article

Abstract

The 2011 Tohoku tsunami entered the Kitakami river and propagated there as a train of shock waves, recorded with a 1-min interval at water level stations at Fukuchi, Iino, and the weir 17.2 km from the mouth, where the bulk of the wave was reflected back. The records showed that each bore kept its shape and identity as it traveled a 10.9-km-path Fukuchi–Iino–weir–Iino. Shock handling based on the cross-river integrated classical shock conditions was applied to reconstruct the flow velocity time histories at the measurement sites, to estimate inflow into the river at each site, to evaluate the wave heights of incident and reflected tsunami bores near the weir, and to estimate propagation speed of the individual bores. Theoretical predictions are verified against the measurements. We discuss experiences of exercising the shock conditions with actual tsunami measurements in the Kitakami river, and test applicability of the shallow-water approximation for describing tsunami bores with heights ranging from 0.3 to 4 m in a river segment with a depth of 3–4 m.

Keywords

Tohoku tsunami 2011 shock wave shock conditions bore undular bore Kitakami River 

References

  1. Abe, K. (1986). Tsunami propagation in rivers of the Japanese Islands. Continental Shelf Research, 5(6), 655–677.CrossRefGoogle Scholar
  2. Adityawan, M. B., Tanaka, H., & Yeh, H. (2014). An Estimation of Land Subsidence due to the 2011 Earthquake using Measured Water Level Data. Journal of JSCE, Ser.B2 (Coastal Engineering), 70(2), I_216–I_220. (in Japanese).CrossRefGoogle Scholar
  3. Aoyama, Y., Adityawan, M. B., Widiyanto, W., Mitobe, Y., Komori, D., & Tanaka, H. (2016). Numerical Study on Tsunami Propagation into a River. In a. Vila-Concejo, E. Bruce, D. M. Kennedy & R. J. McCarroll (Eds.), Proceedings of the 14th International Coastal Symposium (Sydney, Australia). Journal of Coastal Research, Special Issue, No. 75 (pp. 1017–1021). Coconut Creek (Florida), ISSN 0749-0208.Google Scholar
  4. Benjamin, T. B., & Lighthill, M. J. (1954). On cnoidal waves and bores. Proceedings of the Royal Society, A224, 448–460.CrossRefGoogle Scholar
  5. Buschman, F. A., Hoitink, A. J. F., van der Vegt, M., & Hoekstra, P. (2009). Subtidal water level variation controlled by river flow and tides. Water Resources Research, 45, W10420. doi:10.1029/2009WR008167.CrossRefGoogle Scholar
  6. Buschman, F. A., Hoitink, A. J. F., van der Vegt, M., & Hoekstra, P. (2010). Subtidal flow division at a shallow tidal junction. Water Resources Research, 46, W12515. doi:10.1029/2010WR009266.CrossRefGoogle Scholar
  7. Chanson, H. (2010). Undular tidal bores: basic theory and free-surface characteristics. Journal of Hydraulic Engineering, 136(11), 940–944. doi:10.1061/(ASCE)HY.1943-7900.0000264.CrossRefGoogle Scholar
  8. Chanson, H. (2012). Momentum considerations in hydraulic jumps and bores. Journal of Irrigation and Drainage Engineering, 138(4), 382–385. doi:10.1061/(ASCE)IR.1943-4774.0000409.CrossRefGoogle Scholar
  9. Fritz, H. M., Petroff, C. M., Cataln, P., Cienfuegos, R., Winckler, P., Kalligeris, N., et al. (2011). Field survey of the 27 February 2010 Chile tsunami. Pure and Applied Geophysics, 168(11), 1989–2010. doi:10.1007/s00024-011-0283-5.CrossRefGoogle Scholar
  10. Fukushima, M., Matsuura, T., & Hattori, A. (2013). Experimental study on the characteristics of River tsunami. Journal of JSCE B-2 (Coast. Eng.), 69(2), I_261–I_265 (in Japanese).Google Scholar
  11. Henderson, F. M. (1966). Open Channel Flow. (Macmillan Publishing Co., Inc, NY, Collier Macmillan Publishers, London)Google Scholar
  12. Kayane, K., Min, R., Tanaka, H., & Tinh, N. X. (2011). Influence of river mouth topography and tidal variation on tsunami propagation into rivers. Journal of JSCE, Ser.B2 (Coastal Engineering), B2–67(1), 246–250 (in Japanese).Google Scholar
  13. Liu, H., Shimozono, T., Takagawa, T., Okayasu, A., Fritz, H. M., Sato, S., et al. (2013). The 11 March 2011 Tohoku tsunami survey in Rikuzentakata and comparison with historical events. Pure and Applied Geophysics, 170, 1033–1046.CrossRefGoogle Scholar
  14. Mori, N., Takahashi, T., Yasuda, T., & Yanagisawa, H. (2011). Survey of 2011 Tohoku earthquake tsunami inundation and runup. GRL, 38, L00G14. doi:10.1029/2011GL049210
  15. Stoker, J. J. (1957). Water Waves. New York: Interscience Pub Inc.Google Scholar
  16. Tanaka, H., Ishino, K., Nawarathna, B., Nakagawa, H., Yano, S., Yasuda, H., et al. (2008). Field investigation of disaster in Sri Lankan rivers caused by the 2004 Indian Ocean tsunami. Journal Hydroscience and Hydraulic Engineering, 26(1), 91–112.Google Scholar
  17. Tanaka, H., Kayane, K., Adityawan, M. B., Roh, M., & Farid, M. (2014). Study on the relation of river morphology and tsunami propagation in rivers. Ocean Dynamics, 64(9), 1319–1332. doi:10.1007/s10236-014-0749-y.CrossRefGoogle Scholar
  18. Tolkova, E., Tanaka, H., & Roh, M. (2015). Tsunami observations in rivers from a perspective of tsunami interaction with tide and riverine flow. Pure and Applied Geophysics, 172(3–4), 953–968. doi:10.1007/s00024-014-1017-2.CrossRefGoogle Scholar
  19. Tsuji, Y., Yanuma, T., Murata, I., & Fujiwara, C. (1991). Tsunami ascending in rivers as an undular bore. Natural Hazards, 4, 257–266.CrossRefGoogle Scholar
  20. Yasuda, H. (2010). One-dimensional study on propagation of tsunami wave in river channels. Journal of Hydraulic Engineering, 136(2), 93–105.CrossRefGoogle Scholar
  21. Yeh, H., Tolkova, E., Jay, D., Talke, S., & Fritz, H. (2012). Tsunami hydrodynamics in the Columbia river. Journal of Disaster Research, 7(5), 604–608.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.NorthWest Research AssociatesBellevueUSA
  2. 2.Department of Civil EngineeringTohoku UniversitySendaiJapan

Personalised recommendations