Skip to main content
Log in

Time–Frequency Characteristics of Tsunami Magnetic Signals from Four Pacific Ocean Events

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript


The recent deployment of highly sensitive seafloor magnetometers coinciding with the deep solar minimum has provided excellent opportunities for observing tsunami electromagnetic signals. These fluctuating signals (periods ranging from 10–20 min) are generally found to be within \(\pm\) \(\sim\)1 nT and coincide with the arrival of the tsunami waves. Previous studies focused on tsunami electromagnetic characteristics, as well as modeling the signal for individual events. This study instead aims to provide the time–frequency characteristics for a range of tsunami signals and a method to separate the data’s noise using additional data from a remote observatory. We focus on four Pacific Ocean events of varying tsunami signal amplitude: (1) the 2011 Tohoku, Japan event (M9.0), (2) the 2010 Chile event (M8.8), (3) the 2009 Samoa event (M8.0) and, (4) the 2007 Kuril Islands event (M8.1). We find possible tsunami signals in high-pass filtered data and successfully isolate the signals from noise using a cross-wavelet analysis. The cross-wavelet analysis reveals that the longer period signals precede the stronger, shorter period signals. Our results are very encouraging for using tsunami magnetic signals in warning systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others


  • An, C. (2015). Inversion of tsunami waveforms and tsunami warning. PhD thesis, Cornell University

  • Baba, K., Utada, H., Goto, T. N., Kasaya, T., Shimizu, H., & Tada, N. (2010). Electrical conductivity imaging of the Philippine Sea upper mantle using seafloor magnetotelluric data. Physics of the Earth and Planetary Interiors, 183(1–2), 44–62. doi:10.1016/j.pepi.2010.09.010.

  • Chave, A. D., & Thomson, D. J. (2004). Bounded influence magnetotelluric response function estimation. Geophysical Journal International, 157, 988–1006. doi:10.1111/j.1365-246X.2004.02203.x.

    Article  Google Scholar 

  • Chave, A. D., Filloux, J. H., & Luther, D. S. (1989). Electromagnetic induction by ocean currents: BEMPEX. Physics of the Earth and Planetary Interiors, 53(3–4), 350–359. doi:10.1016/0031-9201(89)90021-6.

  • Cox, C. S., Filloux, J. H., & Larsen, J. C. (1971). Electromagnetic studies of ocean currents and electrical conductivity below the ocean-floor (pp. 637–693). In The sea

  • Daubechies, I. (1992). Ten lectures on wavelets. In CBMSNSF regional conference series in applied mathematics (61st ed.). Philadelphia: SIAM

  • Denig, W. F. (2015). Geomagnetic kp and ap indices.

  • Fujii, Y., & Satake, K. (2008). Tsunami sources of the November 2006 and January 2007 Great Kuril Earthquakes. Bulletin of the Seismological Society of America, 98(3), 1559–1571. doi:10.1785/0120070221.

  • Fujii, Y., & Satake, K. (2009). Samoa Islands Tsunami on Sep. 29, 2009.

  • GEBCO (2013) The GEBCO_08 grid, version 20100927. Tech. rep., general bathymetric chart of the oceans.

  • González, F. I., & Kulikov, Y. A. (1993). Tsunami dispersion observed in the deep-ocean. In S. Tinti (Ed.), Tsunamis in the world (pp. 7–16). The Netherlands: Kluwer.

    Chapter  Google Scholar 

  • González, F. I., Satake, K., Boss, E. F., & Mofjeld, H. O. (1995). Edge wave and non-trapped modes of the 25 April 1992 Cape Mendocino Tsunami. Pageoph, 144, 18.

    Article  Google Scholar 

  • Grossmann, A., & Morlet, J. (1984). Decomposition of hardy functions into square integrable wavelets of constant shape. SIAM Journal on Mathematical Analysis, 15(4), 723–736.

    Article  Google Scholar 

  • Gutenberg, B., & Richter, C. F. (1956). Earthquake magnitude, intensity, energy, and acceleration. Annals of Geophysics, 9(1), 15.

    Google Scholar 

  • Ichihara, H., Hamano, Y., Baba, K., & Kasaya, T. (2013). Tsunami source of the 2011 Tohoku earthquake detected by an ocean-bottom magnetometer. Earth and Planetary Science Letters, 382, 117–124. doi:10.1016/j.epsl.2013.09.015

  • Klausner, V., Mendes, O., Domingues, M. O., Papa, A. R. R., Tyler, R. H., Frick, P., et al. (2014). Advantage of wavelet technique to highlight the observed geomagnetic perturbations linked to the Chilean tsunami (2010). Journal of Geophysical Research: Space Physics, 119(2010), 1–17. doi:10.1002/2013JA019398.

    Google Scholar 

  • Larsen, J. C. (1968). Electric and magnetic fields induced by deep sea tides. The Geophysical Journal of the Royal Astronomical Society, 16, 47–70.

    Article  Google Scholar 

  • Larsen, J. C. (1991). Transport measurements from in-service undersea telephone cables. IEEE Journal of Oceanic Engineering, 16(4), 313–318. doi:10.1109/48.90893.

  • Larsen, J. C., & Sanford, T. B. (1985). Florida current volume transports from voltage measurements. Science, 227(4684), 302–304.

    Article  Google Scholar 

  • Liu, P. C. (2000). Wavelet transform and new perspective on coastal and ocean engineering data analysis. In Advances in coastal and ocean engineering (pp 57–99) Singapore: World Scientific Publishing Co

  • Liu, P. L. F., Cho, Y. S., Briggs, M. J., Kanoglu, U., & Synolakis, C. E. (1995). Runup of solitary waves on a circular island. Journal of Fluid Mechanics, 302, 259–285.

    Article  Google Scholar 

  • Malin, S. R. C. (1970). Separation of lunar daily geomagnetic variations into parts of ionospheric and oceanic origin. The Geophysical Journal of the Royal Astronomical Society, 21, 447–455.

    Article  Google Scholar 

  • Manoj, C., Maus, S., & Chulliat, A. (2011). Observation of magnetic fields generated by tsunamis. Eos, 92(2), 13–14. doi:10.1126/science.

    Article  Google Scholar 

  • Maus, S., & Kuvshinov, A. (2004). Ocean tidal signals in observatory and satellite magnetic measurements. Geophysical Research Letters, 31, L15313. doi:10.1029/2004GL020090.

  • McKnight, J. D. (1995). Lunar daily geomagnetic variations in New Zealand. Geophysical Journal International, 122, 889–898.

    Article  Google Scholar 

  • Mendes, O., Domingues, M. O., Mendes da Costa, A., & Clua de Gonzalez, A. L. (2005). Wavelet analysis applied to magnetograms: Singularity detections related to geomagnetic storms. Journal of Atmospheric and Solar-Terrestrial Physics, 67, 1827–1836. doi:10.1016/j.jastp.2005.07.004.

    Article  Google Scholar 

  • Minami, T., Toh, H., & Tyler, R. H. (2015). Properties of electromagnetic fields generated by tsunami first arrivals: Classification based on the ocean depth. 30, 1092 42:2171–2178. doi:10.1002/2015GL063055

  • Mofjeld, H. O., González, F. I., & Newman, J. C. (1997). Short-term forecasts of inundation during teletsunamis in the eastern North Pacific Ocean. In G. Hebenstreit (Ed.), Perspectives on tsunami hazard reduction (pp. 145–155). Amsterdsam: Kluwer Acad.

    Chapter  Google Scholar 

  • Nagarajan, B., Suresh, I., Sundar, D., Sharma, R., Lal, A. K., Neetu, S., et al. (2006). The great tsunami of 26 December 2004: A description based on tide-gauge data from the Indian subcontinent and surrounding areas. Earth Planets Space, 58, 211–215.

    Article  Google Scholar 

  • Newland, D. E. (1993). Harmonic wavelet analysis. Proceedings of the Royal Society, 443(1917), 203–225. doi:10.1098/rspa.1993.0140.

  • NOAA (2015) Global historical tsunami database. Tech. rep., National Geophysical Data Center / World Data System (NGDC/WDS), Boulder.

  • Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 75(4), 1135–1154.

    Google Scholar 

  • Rabinovich, A. B., & Thomson, R. E. (2007). The 26 December 2004 Sumatra Tsunami: Analysis of tide gauge data from the world ocean Part 1. Indian Ocean and South Africa. Pure and Applied Geophysics, 164(2–3), 261–308. doi:10.1007/s00024-006-0164-5.

  • Rabinovich, A. B., Thomson, R. E., & Stephenson, F. E. (2006). The Sumatra tsunami of 26 December 2004 as observed in the North Pacific and North Atlantic oceans. In Surveys in geophysics (vol. 27, pp. 647–677). doi:10.1007/s10712-006-9000-9.

  • Sanford, T. B. (1971). Motionally induced electric and magnetic fields in the sea. Journal of Geophysical Research, 76(15). doi:10.1029/JC076i015p03476.

  • Schnepf, N. R., Manoj, C., Kuvshinov, A., Toh, H., & Maus, S. (2014). Tidal signals in ocean bottom magnetic measurements of the Northwestern Pacific: Observation versus prediction. Geophysical Journal International, 198(2), 1096–1110.

    Article  Google Scholar 

  • Suetsugu, D., Shiobara, H., Sugioka, H., Ito, A., Isse, T., Kasaya, T., Tada, N., Baba, K., Abe, N., Hamano, Y., Tarits, P., Barriot, J. P., & Reymond, D. (2012). TIARES project—Tomographic investigation by seafloor array experiment for the Society hotspot. Earth, Planets and Space 64(4), i–iv. doi:10.5047/eps.2011.11.002

  • Sugioka, H., Hamano, Y., Baba, K., Kasaya, T., Tada, N., & Suetsugu, D. (2014). Tsunami: Ocean dynamo generator. Nature Scientific reports 4. doi:10.1038/srep03596.

  • Tang, L., Titov, V. V., Wei, Y., Mofjeld, H. O., Spillane, M., Arcas, D., et al. (2008). Tsunami forecast analysis for the May 2006 Tonga tsunami. Journal of Geophysical Research, 113(C12), C12015. doi:10.1029/2008JC004922

  • Tatehata, H., Ichihara, H., & Hamano, Y. (2015). Tsunami-induced magnetic fields detected at Chichijima Island before the arrival of the 2011 Tohoku earthquake tsunami. Earth, Planets and Space, 67(185). doi:10.1186/s40623-015-0347-3

  • Thomson, D. J., Lanzerotti, L. J., Maclennan, C. G., & Medford, L. V. (1995). Ocean cable measurements of the tsunami signal from the 1992 Cape Mendocino earthquake. Pure and Applied Geophysics, 144(3–4), 427–440. doi:10.1007/BF00874376.

  • Titov, V., Rabinovich, A. B., Mofjeld, H. O., Thomson, R. E., & González, F. I. (2005). The global reach of the 26 December 2004 Sumatra Tsunami. Science, 309(5743), 2045–2048.

    Article  Google Scholar 

  • Toh, H., Hamano, Y., & Ichiki, M. (2006). Long-term seafloor geomagnetic station in the northwest Pacific : A possible candidate for a seafloor geomagnetic observatory. Earth Planets Space, 58, 697–705.

    Article  Google Scholar 

  • Toh, H., Satake, K., Hamano, Y., Fujii, Y., & Goto, T. (2011). Tsunami signals from the 2006 and 2007 Kuril earthquakes detected at a seafloor geomagnetic observatory. Journal of Geophysical Research, 116(B2), B02104. doi:10.1029/2010JB007873.

  • Tyler, R. H. (2005). A simple formula for estimating the magnetic fields generated by tsunami flow. Geophysical Research Letters, 32(9), 1–4. doi:10.1029/2005GL022429.

  • Tyler, R. H., Maus, S., & Lühr, H. (2003). Satellite observations of magnetic fields due to ocean tidal flow. Science, 299(5604), 239–241. doi:10.1126/science.1078074.

  • Utada, H., Shimizu, H., Ogawa, T., Maeda, T., Furumura, T., Yamamoto, T., et al. (2011). Geomagnetic field changes in response to the 2011 off the Pacific Coast of Tohoku Earthquake and Tsunami. Earth and Planetary Science Letters, 311(1–2), 11–27.

    Article  Google Scholar 

  • Wang, X., & Liu, P. L. F. (2006). An analysis of 2004 Sumatra earthquake fault plane mechanisms and Indian Ocean tsunami. Journal of Hydraulic Research, 44(2), 147–154.

    Article  Google Scholar 

  • Wang, X. M., & Liu, P. L. F. (2005). A numerical investigation of Boumerdes–Zemmouri (Algeria) earthquake and tsunami. CMES—Computer Modeling In Engineering & Sciences, 10(2), 171–183.

    Google Scholar 

  • Yue, H., Lay, T., Rivera, L., An, C., Vigny, C., & Tong, X. (2014). Localized fault slip to the trench in the 2010 Maule, Chile Mw=8.8 earthquake from joint inversion of high-rate GPS, teleseismic body waves, InSAR, campaign GPS, and tsunami observations. Journal of Geophysical Research: Solid Earth, 119, 7786–7804. doi:10.1002/2014JB011340.Received.

    Google Scholar 

  • Zhang, L., Baba, K., Liang, P., Shimizu, H., & Utada, H. (2014). The 2011 Tohoku Tsunami observed by an array of ocean bottom electromagnetometers. Geophysical Research Letters, 41, 4937–4944. doi:10.1002/2014GL060850.

    Article  Google Scholar 

Download references


We thank Hisashi Utada (Earthquake Research Institute, University of Tokyo) and Noriko Tada (Japan Agency for Marine-Earth Science and Technology) for providing the data (T18) used in this study. The results presented in this paper rely on the data collected at Chichijima (CBI), Kakioka (KAK), Memambetsu (MMB) and Honolulu (HON). We thank the Japan Meteorological Agency for supporting the operation of CBI, KAK and MMB and the U.S. Geological Survey for supporting the operation of HON. We also thank INTERMAGNET for promoting high standards of magnetic observatory practice ( The authors would like to thank CIRES innovative research project 2013 for funding. N.R.S. is grateful to the National Oceanic & Atmospheric Administrations Hollings Scholarship Program and the NSF Graduate Research Fellowship Program for supporting her through this research. N.R.S. would also like to thank Matt Pritchard, Rowena Lohman, Robert Tyler and Takuto Minami for useful discussions. Those interested in data from NWP should contact H. Toh ( For data from the SOC stations, please contact H. Sugioka (, and for data from T18, please contact H. Utada (

Author information

Authors and Affiliations


Corresponding author

Correspondence to N. R. Schnepf.

Appendix: COMCOT

Appendix: COMCOT

COMCOT has been used to investigate many other tsunami events, including the 1992 Flores Islands, Indonesia tsunami (Liu et al. 1995), the 2003 Algeria tsunami (Wang and Liu 2005), and the 2004 Indian Ocean tsunami (Wang and Liu 2006). The model builds upon the analytical solutions of Okada (1985) to calculate the seafloor deformation from the fault mechanisms. The fault plane is divided into a certain number of rectangular subfaults and the parameters of each subfault are inputted (i.e. length, width, depth, strike angle, dip angle, rake angle and the amount of slip). The seafloor movement due to each subfault can be calculated assuming an elastic semi-infinite half space earth model. Earthquakes typically occur within seconds, thereby preventing the water column above the deforming seafloor from escaping. Consequently, the model does not account for the time dependence of the earthquake’s rupture and instead assumes that it happens instantaneously so that the sea surface mimics the deformation of the seafloor.

The fault plane is the interface between the subducting plate and the overriding plate. The strike direction is used to define strike and the angles of rake and dip. Strike direction is the direction one must face to stand on the top edge of the fault plane with the plane on one’s righthand side. From this, \(\theta\) is the angle measured clockwise from north to the strike direction (\(0^{\circ } \le \theta \le 360^{\circ }\)). The dip angle \(\delta\) is the angle between the horizontal top surface and the fault plane (\(0^{\circ } \le \delta \le 90^{\circ }\)). Lastly, the rake angle \(\lambda\) is the angle measured anti-clockwise on the fault plane from the strike direction to the direction of the overriding plate’s motion relative to the subducting plate (−180\(^{\circ } \le \lambda \le 180^{\circ }\)).

The model is then used to solve the linear shallow water wave equations:

$$\begin{aligned} \frac{\partial \zeta }{\partial t}+\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}= \,& {} 0 \end{aligned}$$
$$\begin{aligned} \frac{\partial P}{\partial t}+gH\frac{\partial \zeta }{\partial x}= \,& {} 0 \end{aligned}$$
$$\begin{aligned} \frac{\partial Q}{\partial t}+gH\frac{\partial \zeta }{\partial y}=\, & {} 0 \end{aligned}$$

where \(\zeta\) denotes the free surface elevation, and P and Q are the volume flux in the x and y directions, respectively (ie. \(P=hu\), \(Q=hv\)). These equations are solved via an explicit leap-frog finite differencing model that uses a staggered-grid scheme and the algorithm is parallelized based on FORTRAN and OpenMPI.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schnepf, N.R., Manoj, C., An, C. et al. Time–Frequency Characteristics of Tsunami Magnetic Signals from Four Pacific Ocean Events. Pure Appl. Geophys. 173, 3935–3953 (2016).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: