Pure and Applied Geophysics

, Volume 173, Issue 8, pp 2813–2840 | Cite as

Regional Ambient Noise Tomography in the Eastern Alps of Europe

Article

Abstract

We present results from ambient noise tomography applied to temporary seismological stations in the easternmost part of the Alps and their transition to the adjacent tectonic provinces (Vienna Basin, Bohemian Massif, Southern Alps, Dinarides). By turning each station into a virtual source, we recover surface waves in the frequency range between 0.1 and 0.6 Hz, which are sensitive to depths of approximately 2–15 km. The utilization of horizontal components allows for the analysis of both Rayleigh and Love waves with comparable signal-to-noise ratio. Measured group wave dispersion curves between stations are mapped to local cells by means of a simultaneous inverse reconstruction technique. The spatial reconstruction for Love-wave velocities fails in the central part of the investigated area, and we speculate that a heterogeneous noise source distribution is the cause for the failure. Otherwise, the obtained group velocity maps correlate well with surface geology. Inversion of Rayleigh-wave velocities for shear-wave velocities along a vertical N-S section stretching from the Bohemian Massif through the Central Alps to the Southern Alps and Dinarides reveals a mid-crustal low-velocity anomaly at the contact between the Bohemian Massif and the Alps, which shows a spatial correlation with the P-wave velocity structure and the low-frequency component of the magnetic anomaly map. Our study is validated by the analysis of resolution and accuracy, and we further compare the result to shear-wave velocity models estimated from other active and passive experiments in the area.

Notes

Acknowledgments

ALPASS was funded by the Austrian Academy of Sciences. We thank the teams and research groups involved in the data collection (Technical University of Vienna, University of Texas at El Paso, University of Leeds) and the instrument donors (IRIS/UTEP, SEIS-UK, Polish Academy of Sciences, University of Oulu). Yong Ren kindly provided the shear-wave velocity model from the CBP data set. Bruno Meurers (University of Vienna) and Robert Supper (Geological Survey of Austria) helped with obtaining the magnetic anomaly map. We thank Florian Bleibinhaus and one anonymous reviewer for their insightful and constructive comments.

References

  1. Aki, K. (1957), Space and time spectra of stationary stochastic waves, with special reference to micro-tremors, Bulletin of the Earthquake Research Institute 35, 415–457.Google Scholar
  2. Aki, K., and Richards, P.G. (1980), Quantitative Seismology, Vol. I and II, W.H. Freeman, San Francisco.Google Scholar
  3. Bakulin, A., and Calvert, R. (2006), The virtual source method: Theory and case study, Geophysics 71, SI139–SI150.Google Scholar
  4. Behm, M., Brückl, E., Chwatal, W., and Thybo, H. (2007). Application of stacking and inversion techniques to 3D wide-angle reflection and refraction seismic data of the Eastern Alps, Geophysical Journal International 170, 275–298.Google Scholar
  5. Behm, M. (2009), 3-D modelling of the crustal S-wave velocity structure from active source data: application to the Eastern Alps and the Bohemian Massif, Geophysical Journal International 179, 265–278.Google Scholar
  6. Behm, M., and Snieder, R. (2013). Love waves from local traffic noise interferometry, The Leading Edge 32, 628–632.Google Scholar
  7. Behm, M., Leahy, G.M., and Snieder, R. (2014), Retrieval of local surface wave velocities from traffic noise—an example from the La Barge basin (Wyoming), Geophysical Prospecting 62, 223–243.Google Scholar
  8. Bensen, G.D, Ritzwoller, M.H, Barmin, M.P., Levshin, A.L, Lin, F., Moschetti, M.P., Shapiro, N.M., and Yang A. (2007), Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements, Geophysical Journal International, 169, 1239–1260.Google Scholar
  9. Bianchi, I., and Bokelmann, G. (2014), Seismic signature of the Alpine indentation, evidence from the Eastern Alps, Journal of Geodynamics, 82, 69–77.Google Scholar
  10. Bianchi, I., Miller, M.S., and Bokelmann, G. (2014), Insights on the upper mantle beneath the Eastern Alps, Earth and Planetary Science Letters 403, 199–209.Google Scholar
  11. Bianchi, I., Behm, M., Rumpfhuber, E.M., and Bokelmann, G. (2015), Moho depths in the Eastern Alps from Receiver Function analysis, Pure and Applied Geophysics 172, 2, 295–308.Google Scholar
  12. Bina, M.M., and Henry, B. (1990), Magnetic properties, opaque mineralogy and magnetic anisotropies of serpentinized peridotites from ODP Hole 670A near the Mid-Atlantic Ridge, Phys. Earth Planet. Sci. 65, 88–103.Google Scholar
  13. Blaumoser, N. H. (1992), Eine erste gesamte aeromagnetische Karte von Österreich und ihre Transformationen, Mitt. Österr. Geol. Ges./Austrian Journal of Earth Sciences 84, 185–203.Google Scholar
  14. Bleibinhaus, F., and Gebrande, H. (2006), Crustal structure in the Eastern Alps along the TRANSALP profile from wide-angle seismic tomography, Tectonophysics 414, 51–69.Google Scholar
  15. Bleibinhaus, F., Hilberg, S., and Stiller, M. (2010), First results from a Seismic Survey in the Upper Salzach Valley, Austria, Austrian Journal of Earth Sciences 103/2, 28–32.Google Scholar
  16. Bleil, U., and Pohl, J. (1976), The Berchtesgaden Magnetic Anomaly, International Journal of Earth Sciences 65, 756–767.Google Scholar
  17. Brix, F., 1993, Erdöl und Erdgas in Österreich, Verlag NHM/F.Berger, Wien/Horn.Google Scholar
  18. Brocher, T. (2005), Empirical relation between elastic wavespeeds and density in the Earth’s crust, Bulletin of the seismological Society of America 95, 2081–2092.Google Scholar
  19. Brückl, E., Bodoky, T., Hegedüs E, Hrubcova, P. Gosar, A., Grad, M., Guterch, A., Hajnal, Z., Keller, G.R., Špičák, A., Sumanovac, F., Thybo, H., Weber, F., and ALP 2002 Working Group (2003), ALP2002 Seismic Experiment, Studia geophysica geodaetica 47, 671–679.Google Scholar
  20. Brückl, E., Bleibinhaus, F., Gosar, A., Grad, M., Guterch, A., Hrubcova, P., Keller, G.R., Majdanski, M., Sumanovac, F., Tiira, T., Yliniemi, J., Hegedüs, E., and Thybo, H. (2007), Crustal structure due to collisional and escape tectonics in the Eastern Alps region based on profiles Alp01 and Alp02 from the ALP 2002 seismic experiment, Journal of Geophysical Research 112, B06308.Google Scholar
  21. Brückl, E., Behm,, M., Decker, K., Grad, M., Guterch, A., Keller, G.R., and Thybo, H. (2010), Crustal structure and active tectonics in the Eastern Alps, Tectonics 29, TC2011.Google Scholar
  22. Bussat, S., and Kugler, S. (2009), Feasibility of Offshore Ambient-Noise Surface-Wave Tomography on a Reservoir Scale, 79th International SEG Meeting, Houston, USA, Expanded Abstracts, 1627–1631.Google Scholar
  23. Campillo, M., and Paul A. (2003), Long-range correlations in the diffuse seismic coda, Science 299, 547–549.Google Scholar
  24. Chevrot, S., Sylvander, M., Benahmed, S., Ponsolles, C., Lefevre, J.M., and Paradis D. (2007), Source locations of secondary microseisms in western Europe: Evidence for both coastal and pelagic sources. Journal of Geophysical Research 112, B11301.Google Scholar
  25. Christensen, N.I. (2004), Serpentinites, peridotites, and seismology, Int. Geol. Rev. 46, 795–816.Google Scholar
  26. Dahlen, F.A., Tromp, J., 1998, Theoretical global seismology, Princeton University Press.Google Scholar
  27. Dando, B.D.E., Stuart, G.W., Houseman, G.A., Hegedüs, E., Brückl, E., and Radovanović, S. (2011), Teleseismic tomography of the mantle in the Carpathian–Pannonian region of central Europe, Geophysical Journal International 186, 11–31.Google Scholar
  28. Draganov, D., Campman, X., Thorbecke, J., Verdel, A., and Wapenaar, K. (2009), Reflection images from ambient seismic noise, Geophysics 74, 63–67.Google Scholar
  29. Dziewonski, A.M., Bloch, S., and Landisman, M. (1969). A technique for the analysis of transient seismic signals, Bulletin of the seismological Society of America 59, 427–444.Google Scholar
  30. Cho, K.H., Hermann, R.B., Ammon, C.J., and Lee, K. (2006), Imaging the crust of the Korean peninsula by surface wave tomography, Bulletin of the seismological Society of America 97, 198–207.Google Scholar
  31. Fichtner, A. (2014), Source and processing effects on noise correlations, Geophysical Journal International 197, 1527–1531.Google Scholar
  32. Forghani, F., and Snieder R. (2010), Underestimation of body waves and feasibility of surface-wave reconstruction by seismic interferometry, The Leading Edge 29, 790–794.Google Scholar
  33. Fry, B., Deschamps, F., Kissling, E., Stehly, L., and Giardini, D. (2010), Layered azimuthal anisotropy of Rayleigh wave phase velocities in the European Alpine lithosphere inferred from ambient noise, Earth and Planetary Science Letters 297, 95–102.Google Scholar
  34. Froment, B., Campillo, M., Roux, P., Gouèdard, P., Verdel, A., and Weaver, R.L., (2010), Estimation of the effect of nonisotropically distributed energy on the apparent arrival time in correlations, Geophysics 75, SA85–SA93.Google Scholar
  35. Gardner, L.W. (1939), An areal plan for mapping subsurface structure by refraction shooting. Geophysics 4, 247–259.Google Scholar
  36. Gnojek, I., and Heinz, H. (1993), Central European (Alpine-Carpathian) belt of magnetic anomalies and its geological interpretation, Geol. Carpathica 44, 135–142.Google Scholar
  37. Götzinger, M. (1987), Mineralogy and genesis of vermiculite in serpentinites of the Bohemian Massif in Austria, Mineralogy and Petrology 36, 93–110.Google Scholar
  38. Grad, M., Brückl, E., Majdanski, M., Behm, M., Guterch, A., and CELEBRATION 2000, ALP 2002, Working Groups (2009), Crustal structure of the Eastern Alps and their foreland: seismic model beneath the CEL10/Alp04 profile and tectonic implications, Geophysical Journal International 177, 279–295.Google Scholar
  39. Graßl H., Neubauer, F., Millahn, K., and Weber, F. (2004), Seismic image of the deep crust at the eastern margin of the Alps (Austria): Indications for crustal extension in a convergent origin, Tectonophysics 380, 105–122.Google Scholar
  40. Gutdeutsch, R., and Aric, K., Seismicity and neotectonics of the East Alpine-Carpathian and Pannonian Area, In The Pannonian Basin: a study in basin evolution (ed. Royden L.H. and Horvath F.) (AAPG Memoir 45, American Association of Petroleum Geologists and Hungarian Geological Society, Tulsa, Oklahoma, Budapest 1988) pp. 183–194.Google Scholar
  41. Guterch, A., Grad, M., Špičák, A., Brückl, E., Hegedüs, E., Keller, G.R., Thybo, H., and CELEBRATION 2000, ALP 2002, SUDETES 2003 Working Groups, (2003a), An overview of recent seismic refraction experiments in Central Europe, Stud. Geophys. Geod. 47, 651– 657.Google Scholar
  42. Guterch, A., Grad, M.,Keller, G.R., Posgay, K.,Vozar, J., Špičák, A., Brückl, E., Hajnal, Z., Thybo, H., Selvi, O., and CELEBRATION 2000 Experiment Team, (2003b), CELEBRATION 2000 Seismic Experiment, Stud. Geophys. Geod. 47, 659–669.Google Scholar
  43. Halliday, D., and Curtis, A. (2008), Seismic interferometry, surface waves and source distribution, Geophysical Journal International 175, 1067–1087.Google Scholar
  44. Harmon, N., Rychert., C., and Gerstoft, P. (2010), Distribution of noise sources for seismic interferometry, Geophysical Journal International 183, 1470–1484.Google Scholar
  45. Heinz, H., and Seiberl, W. (1990), Magnetic structures of the eastern Alps west of the Tauern window, Mém. Soc. géol. France 156, 123–128.Google Scholar
  46. Herrmann, R. B. (2013), Computer programs in seismology: An evolving tool for instruction and research, Seismological Research Letters 84, 1081–1088.Google Scholar
  47. Hinsch, R., and Decker, K. (2003), Do seismic slip deficits indicate an underestimated earthquake potential along the Vienna Basin Transfer Fault System?, Terra Nova 15, 343–349.Google Scholar
  48. Hrubcová, P., Środa, P., Špičák, A., Guterch, A., Grad, M., Keller, G. R., Brückl, E., and Thybo, H. (2005), Crustal and uppermost mantle structure of the Bohemian Massif based on CELEBRATION 2000 data, Journal of Geophysical Research 110, B11305.Google Scholar
  49. Iwasaki T. (2002), Extended time-term method for identifying lateral structural variations from seismic refraction data, Earth Planets Space 54, 663–677.Google Scholar
  50. Kedar, S., Longuet-Higgins, M., Webb F., Graham, N., Clayton, R., and Jones, C. (2008), The origin of deep ocean microseisms in the North Atlantic Ocean, Proc. R. Soc. London, Ser. A. 464, 777–793.Google Scholar
  51. Kimman, W. P., Trampert, J. (2010), Approximations in seismic interferometry and their effects on surface waves, Geophysical Journal International 182, 461–476.Google Scholar
  52. Kissling, E., Hetenyi., G., and AlpArray Working group (2014), AlpArray – Probing Alpine geodynamics with the next generation of geophysical experiments and techniques, Geophysical Research Abstracts 16, EGU2014–7065.Google Scholar
  53. Friedrich, A., Krüger, F., and Klinge, K. (1998), Ocean-generated microseismic noise located with the Grafenberg array, Journal of Seismology 47, 47–64.Google Scholar
  54. Landes, M., Hubans, F., Shapiro, N.M., Paul, A., and Campillo, M. (2010), Origin of deep ocean microseisms by using teleseismic body waves, Journal of Geophysical Research 115, B05302.Google Scholar
  55. Levshin, A.L., Yanovskaya, T.B., Lander, A.V., Bukchin, B.G., Barmin, M.P., Ratnikova, L.I., and IITS, E.N. (1989), Seismic Surface Waves in a Laterally Inhomogeneous Earth, Modern Approaches in Geophysiscs, Ed. Keilis-Borok V.I. Kluwer. ISBN 0-7923-0044-0.Google Scholar
  56. Li, H., Bernardi, F., and Michelini, A. (2010a), Surface wave dispersion measurements from ambient seismic noise analysis in Italy, Geophysical Journal International 180, 1242–1252.Google Scholar
  57. Li, H., Bernardi, F., and Michelini, A. (2010b), Love wave tomography in Italy from seismic ambient noise, Earthquake Science 23, 487–495.Google Scholar
  58. Lin, F.-C., Ritzwoller, M.H., Townend, J., Savage, M., and Bannister, S. (2007), Ambient noise Rayleigh wave tomography of New Zealand, Geophysical Journal International 170, 649–666.Google Scholar
  59. Lin F., Moschetti M.P., and Ritzwoller M.H. (2008), Surface wave tomography of the western United States from ambient seismic noise: Rayleigh and Love wave phase velocity maps, Geophysical Journal International 169, 1239–1260.Google Scholar
  60. Lippitsch, R., Kissling, E., and Ansorge, J. (2003), Upper mantle structure beneath the Alpine orogen from high-resolution teleseismic tomography, Journal of Geophysical Research 108, B2376.Google Scholar
  61. Lobkis, O., and Weaver, R. (2001), On the emergence of the Green’s function in the correlations of a diffuse field, The Journal of the Acoustical Society of America 110, 3011–3017.Google Scholar
  62. Longuet-Higgins, M. S. (1950), A theory of the origin of microseisms, Philos.Trans. R. Soc. London, Ser. A 243, 1–35.Google Scholar
  63. Lüschen, E., Borrini, D., Gebrande, H., Lammerer, B., Millahn, K., Neubauer, F., Nicolich, R., and TRANSALP Working Group (2006), TRANSALP ‐ deep crustal Vibroseis and explosive seismic profiling in the Eastern Alps, Tectonophysics 414, 9–38.Google Scholar
  64. Macquet, M., Paul, A., Pedersen, H.A., Villasenor, A., Chevrot, S., Sylvander, M., Wolyniec D., and Pyrope Working Group (2014), Ambient noise tomography of the Pyrenees and the surrounding regions: inversion for a 3-D Vs model in the presence of a very heterogeneous crust, Geophysical Journal International 199, 402–415.Google Scholar
  65. Maupin, V., Park, J. (2007), Chapter 1.09 Theory and Observations—Wave Propagation in Anisotropic Media. In Treatise on Geophysics, G. Schubert, (ed.), Elsevier, Amsterdam, 2007, 289–321.Google Scholar
  66. Mitterbauer, U., Behm, M., Brückl, E., Lippitsch, R., Guterch, A., Keller, G.R., Koslovskaya, E., Rumpfhuber, E-M., and Šumanovac, F. (2011), Shape and origin of the East-Alpine slab constrained by the ALPASS teleseismic model, Tectonophysics 510, 195–206.Google Scholar
  67. Mokhtar, T. A., Herrmann, R. B., and Russel, D. R. (1988), Seismic velocity and Q model for the shallow structure of the Arabian shield from short-period Rayleigh waves, Geophysics 53, 1379–1387.Google Scholar
  68. Mookherjee, M., and Stixrude, L. (2013), Structure and elasticity of serpentine at high-pressure, Earth Planet. Sc. Lett. 279, 11–19.Google Scholar
  69. Moschetti, M.P., Ritzwoller, M.H. and Shapiro, N.M. (2007), Surface wave tomography of the western United States from ambient seismic noise: Rayleigh wave group velocity maps, Geochem. Geophys. Geosyst. 8, Q08010.Google Scholar
  70. Nakata, N., Snieder, R., and Behm M., (2014), Body-wave interferometry using regional earthquakes with multidimensional deconvolution after wavefield decomposition at free surface, Geophys. J. Int., 199, 1125–1137.Google Scholar
  71. Nakata, N., Snieder, R., Tsuji, T., Larner, K., and Matsuoka, T., (2011), Shear-wave imaging from traffic noise using seismic interferometry by cross-coherence, Geophysics 76, SA97–SA106.Google Scholar
  72. Nakata, N., Chang, J. P., Lawrence, J. F., and Boue, P. (2015), Body-wave extraction and tomography at Long Beach, California, with ambient-noise tomography, Journal of Geophysical Research 120, 1159–1173.Google Scholar
  73. Olivier, G., Brenguier, F., Campillo, M., Lynch, R., and Roux, P. (2015), Body-wave reconstruction from ambient seismic noise correlation in an underground mine, Geophysics 80(3), KS11–KS25.Google Scholar
  74. Oufi, O., Cannat, M., and Horen, H. (2002), Magnetic properties of variably serpentinized abyssal peridotites, Journal of Geophysical Research 107, 19.Google Scholar
  75. Peresson, H., and Decker, K. (1997), Far-field effect of late Miocene subduction in the Eastern Carpathians: E ‐ W compression and inversion of structures in the Alpine–Carpathian–Pannonian region, Tectonics 16, 38–56.Google Scholar
  76. Picozzi M., Parolai S., Bindi D., and Strollo A. (2009), Characterization of shallow geology by high-frequency seismic noise tomography, Geophysical Journal International 176, 164–174.Google Scholar
  77. Prieto, G., Lawrence, J.F, and Beroza, G.C. (2009), Anelastic Earth Structure from the Coherency of the Ambient Seismic Field, Journal of Geophysical Research 114, B07303.Google Scholar
  78. Qorbani, E., Kurz, W., Bianchi, I., Bokelmann, G. (2015), Correlated crustal and mantle deformation in the Tauern Window, Eastern Alps, Austrian Journal of Earth Sciences, 108/1, 161–173.Google Scholar
  79. Ratschbacher, L., Frisch, W., Linzer, H. G., and Merle, O. (1991), Lateral extrusion in the Eastern Alps. 2: Structural analysis, Tectonics 10, 257–271.Google Scholar
  80. Rawlinson, N. and Sambridge, M. (2003), Seismic traveltime tomography of the crust and lithosphere, Advances in Geophysics 46, 81–198.Google Scholar
  81. Reisner, M. (1988), Ein Beitrag zur Komplexinterpretation für den Kohlenwasserstoffaufschluss in den Nördlichen Kalkalpen, Master thesis, Montanuniversität Leoben.Google Scholar
  82. Ren, Y., Grecu, B., Stuart, G., Houseman, G., Hegedüs, E., and South Carpathian Project Working Group (2013), Crustal structure of the Carpathian–Pannonian region from ambient noise tomography, Geophysical Journal International 195, 1351–1369.Google Scholar
  83. de Ridder, S., and Dellinger J. (2011), Ambient seismic noise eikonal tomography for near-surface imaging at Valhall, The Leading Edge 30, 1–7.Google Scholar
  84. Roux, P., Sabra, K.G., Kuperman, W.A., and Roux, A. (2005), Ambient noise crosscorrelation in free space: theoretical approach, Journal of the Acoustical Society of America 117(1), 79–84.Google Scholar
  85. Royden, L.H. (1993), Evolution of retreating subduction boundaries formed during continental collision, Tectonics 12, 629–638.Google Scholar
  86. Ruzek, B., Plomerova, J., and Babuska, V. (2012), Joint inversion of teleseismic P waveforms and surface-wave group velocities from ambient seismic noise in the Bohemian Massif, Stud. Geophys. Geod. 56, 107–140.Google Scholar
  87. Schimmel, M., Stutzmann, E., and Gallart, J. (2011a), Using instantaneous phase coherence for signal extraction from ambient noise data at a local to a global scale, Geophysical Journal International 184, 494–506.Google Scholar
  88. Schimmel, M., Stutzmann, E., Ardhuin, F., and Gallart, J. (2011b), Polarized Earth’s ambient microseismic noise, Geochem. Geophys. Geosyst. 12, Q07014.Google Scholar
  89. Schmid, S., Fügenschuh, B., Kissling, E., and Schuster, R. (2004), Tectonic map and overall architecture of the Alpine orogen. Swiss J. Geosci., 97, 93–117.Google Scholar
  90. Schuster, G. T. (2010), Seismic Interferometry, Cambridge University Press, Cambridge.Google Scholar
  91. Seiberl, W. (1991), Aeromagnetische Karte der Republik Österreich 1:1,000.000 (Isanomalen der Totalintensität), Geological Survey of Austria.Google Scholar
  92. Shapiro, N.M, Campillo, M., Stehly, L., and Ritzwoller, M.H. (2005), High resolution surface wave tomography from ambient seismic noise, Science 307, 1615–1618.Google Scholar
  93. Simeoni, O., and Brückl, E., 2009, The effect of gravity stripping on the resolution of deep crustal structures in the Eastern Alps and surroundings Regions, Austrian Journal of Earth Sciences 102, 157–169.Google Scholar
  94. van der Sluis, A., and van der Horst, H.A. 1987, Numerical solution of large, sparse linear algebraic systems arising from tomographic problems, In: Seismic Tomography (ed. Nolet G., and Reidel D.) (Hingham, 1987) pp. 49–83.Google Scholar
  95. Snieder, R. (2004), Extracting the Green’s function from the correlation of coda waves: a derivation based on stationary phase, Phys. Rev. E 69, 046610.Google Scholar
  96. Snieder, R. (2007), Extracting the Green’s function of attenuating heterogeneous acoustic media from uncorrelated waves, Journal of the Acoustical Society of America 121, 2637–2643.Google Scholar
  97. Stehly, L., Campillo, M., and Shapiro, N.M. (2006), A study of seismic noise from its long range correlation properties, Journal of Geophysical Research 111, B10206.Google Scholar
  98. Stehly L., Fry, B.,M. Campillo, M., Shapiro, N.M., Guilbert, J., Boschi, L., and Giardini, D. (2009), Tomography of the Alpine region from observations of seismic ambient noise, Geophysical Journal International 178, 338–350.Google Scholar
  99. Stein, S., and Wyssesion, M. (2003), An introduction to seismology, earthquakes, and earth structure. Blackwell publishing.Google Scholar
  100. Tarantola, A. (1987), Inverse Problem Theory, Elsevier Scientific Publishing Company, New York.Google Scholar
  101. Telford, W.M., Geldart, L.P., and Sheriff, R.E. (1990), Applied Geophysics, 2nd edn., Cambridge University Press, Cambridge.Google Scholar
  102. Toft, P.B., Arkani-Hamed, J., and Haggerty, S.E. (1990), The effects of serpentinization on density and magnetic susceptibility: a petrophysical model, Phys. Earth Planet. Inter. 65, 137–157.Google Scholar
  103. Tsai, V.C. (2009), On establishing the accuracy of noise tomography traveltime measurements in a realistic medium, Geophysical Journal International 178, 1555–1564.Google Scholar
  104. Tsai, V. (2011), Understanding the amplitudes of noise correlation measurements, Journal of Geophysical Research 116, B09311.Google Scholar
  105. Verbeke, J., Boschi, L., Stehly, L., Kissling, E., and Michelini, A. (2012), High-resolution Rayleigh-wave velocity maps of central Europe from a dense ambient-noise data set, Geophysical Journal International 188, 1173–1187.Google Scholar
  106. Villasenor, A., Yang, Y., Ritzwoller, M.H., and Gallart, J. (2007), Ambient noise surface wave tomography of the Iberian Peninsula: Implications for shallow seismic structure, Geophysical Research Letters 34, L11304.Google Scholar
  107. Wapenaar, K. (2004), Retrieving the elastodynamic Green’s function of an arbitrary inhomogeneous medium by cross correlation, Phys. Rev. Lett. 93, 254301.Google Scholar
  108. Wapenaar, K., Draganov, D., Snieder, R., Campman, X, and Verdel, A. (2010a), Tutorial on seismic interferometry: Part 1 – Basic principles and applications, Geophysics 75, 75A195–75A209.Google Scholar
  109. Wapenaar K., Slob E., Snieder, R., and Curtis, A. (2010b), Tutorial on seismic interferometry: Part 2 – Underlying theory and advances, Geophysics 75, 75A211–75A227.Google Scholar
  110. Weaver, R., Froment, B., Campillo, M. (2009), On the correlation of non-isotropically distributed ballistic scalar diffuse waves, The Journal of the Acoustical Society of America, 126, 1817–1826.Google Scholar
  111. Xu, Z., Xia, J., Luo, Y., Cheng, F., and Pan, Y. (2015), Potential Misidentification of Love-Wave Phase Velocity Based on Three-Component Ambient Seismic Noise, Pure and Applied Geophysics, available online.Google Scholar
  112. Yang, Y., Ritzwoller, M.H., Levshin, A.L., and Shapiro, N.M. (2007), Ambient noise Rayleigh wave tomography across Europe, Geophysical Journal International 168, 259–274.Google Scholar
  113. Yang, Y., Ritzwoller, M.H., Lin., F.-C., Moschetti, M.P., and Shapiro, N.M. (2008), Structure of the crust and uppermost mantle beneath the western United States revealed by ambient noise and earthquake tomography, Journal of Geophysical Research 113, B12310.Google Scholar
  114. Yang, Y., and M. H. Ritzwoller (2008), Teleseismic surface wave tomography in the western U.S. using the Transportable Array component of USArray, Geophysical Research Letters 35, L04308.Google Scholar
  115. Yao, H., van der Hilst, R.D., and de Hoop, M.V. (2006), Surface-wave tomography in SE Tibet from ambient seismic noise and two-station analysis: I.—Phase velocity maps, Geophysical Journal International 166, 732–744.Google Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Department of Meteorology and GeophysicsUniversity of ViennaViennaAustria
  2. 2.ConocoPhillips School of Geology and GeophysicsUniversity of OklahomaNormanUSA
  3. 3.Department of GeophysicsStanford UniversityStanfordUSA

Personalised recommendations