# Consistent Estimates of Tsunami Energy Show Promise for Improved Early Warning

- 417 Downloads
- 11 Citations

## Abstract

Early tsunami warning critically hinges on rapid determination of the tsunami hazard potential in real-time, before waves inundate critical coastlines. Tsunami energy can quickly characterize the destructive potential of generated waves. Traditional seismic analysis is inadequate to accurately predict a tsunami’s energy. Recently, two independent approaches have been proposed to determine tsunami source energy: one inverted from the Deep-ocean Assessment and Reporting of Tsunamis (DART) data during the tsunami propagation, and the other derived from the land-based coastal global positioning system (GPS) during tsunami generation. Here, we focus on assessing these two approaches with data from the March 11, 2011 Japanese tsunami. While the GPS approach takes into consideration the dynamic earthquake process, the DART inversion approach provides the actual tsunami energy estimation of the propagating tsunami waves; both approaches lead to consistent energy scales for previously studied tsunamis. Encouraged by these promising results, we examined a real-time approach to determine tsunami source energy by combining these two methods: first, determine the tsunami source from the globally expanding GPS network immediately after an earthquake for near-field early warnings; and then to refine the tsunami energy estimate from nearby DART measurements for improving forecast accuracy and early cancelations. The combination of these two real-time networks may offer an appealing opportunity for: early determination of the tsunami threat for the purpose of saving more lives, and early cancelation of tsunami warnings to avoid unnecessary false alarms.

## Keywords

Tsunami energy GPS network DART system early warning## Notes

### Acknowledgments

This research is partially funded by the NOAA Center for Tsunami Research, PMEL contribution 4405, and by the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement NA10OAR4320148 (2010–2015) and NA15OAR4320063 (2015–2020), Contribution No. 2497. Part of the research carried out by Y. T. Song and Y. Bar-Sever here was conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract “GPS-Aided and DART-Ensured Real-time (GADER) Tsunami Early Detection System” with the National Aeronautics and Space Administration (NASA).

## Supplementary material

## References

- Ambraseys, N. N. (1962). Data for the investigation of seismic sea waves in the Eastern Mediterranean.
*Bulletin of the Seismological Society of America**52*, 895–913.Google Scholar - Ando, M., Ishida, M., Hayashi, Y., & Mizuki, C. (2011). Interviews with survivors of Tohoku earthquake provide insights into fatality rate.
*EOS Transitions AGU,**92*(48), 411–412.CrossRefGoogle Scholar - Bernard, E. N., & Titov, V. V. (2015). Evolution of tsunami warning systems and products.
*PPhilosophical Transactions of the Royal Society*. doi: 10.1098/rsta.2014.0371.Google Scholar - Bernard, E. N., Wei, Y., Tang, L., & Titov, V. V. (2014). Impact of near-field, deep-ocean tsunami observations on forecasting the 7 December 2012 Japanese Tsunami.
*Pure and Applied Geophysics*,*171*(12), 3483–3491. doi: 10.1007/s00024-013-0720-8.CrossRefGoogle Scholar - Blewitt, G., Kreemer, C., Hammond, W. C., Plag, H.-P., Stein, S., & Okal, E. (2006). Rapid determination of earthquake magnitude using GPS for tsunami warning systems.
*Geophysical Research Letters**33*, L11309. doi: 10.1029/2006GL026145.CrossRefGoogle Scholar - Degueldre, H., Metzger, J. J., Geisel, T., & Fleischmann, R. (2016). Random focusing of tsunami waves.
*Nature Physics,**12*, 259–262. doi: 10.1038/nphys3557.CrossRefGoogle Scholar - Gica, E., Spillane, M. C., Titov, V. V., Chamberlin, C. D., & Newman, J. C. (2008).
*Development of the forecast propagation database for NOAA’s Short-term Inundation Forecast for Tsunamis (SIFT). NOAA technical memorandum OAR PMEL-139, NTIS: PB2008-109391*. Seattle:NOAA/Pacific Marine Environmental Laboratory.Google Scholar - Gusiakov, V. K. (1978).
*Static displacement on the surface of an elastic space, in Ill-Posed Problems of Mathematical Physics and Interpretation of Geophysical Data (in Russian)*(pp. 23–51). Novosibirsk: Comput. Cent. of Sov. Acad. of Sci.Google Scholar - Gusman, A. R., Tanioka, Y., Sakai, S., & Tsushima, H. (2012). Source model of the great 2011 Tohoku earthquake estimated from tsunami waveforms and crustal deformation data.
*Earth and Planetary Science Letters,**341*, 234–242.CrossRefGoogle Scholar - Hammack, J. L., & Segur, H. (1974). The Korteweg-de Vries equation and water waves. Part 2. Comparison with experiments.
*Journal of Fluid Mechanics,**65*(Part 2), 289–314.CrossRefGoogle Scholar - Iida, K. (1956). Earthquakes accompanied by tsunamis occurring under the sea off the islands of Japan.
*Journal of Earth Sciences, Nagoya University,**4*, 1–43.Google Scholar - Imamura, A. (1942). History of Japanese tsunamis.
*Kayo-No-Kagaku (Oceanography),**2*, 74–80.**(in Japanese)**.Google Scholar - Ito, Y., et al. (2011). Frontal wedge deformation near the source region of the 2011 TohokuOki earthquake.
*Geophysical Research Letters,**38*, L00G05.CrossRefGoogle Scholar - Jouhana, D., & Paddock R. C. (2006). Indonesia quake kills 3500,
*Chicago Tribune*. http://articles.chicagotribune.com/2006-05-28/news/0605280253_1_bantul-quake-caused-widespread-panic-rush-tents. - Kanoglu, U., Titov, V., Bernard, E., & Synolakis, C. (2015 ). Tsunami; bridge the science, engineering and social science.
*Philosophical Transactions of the Royal Society A,**373*(2053), 20140369.CrossRefGoogle Scholar - Kanoglu, U., & Synolakis, C. E. (2006). Initial value problem solution of nonlinear shallow water wave equations.
*Physical Review Letters,**97*(14), 148501. doi: 10.1103/PhysRevLett.97.148501.CrossRefGoogle Scholar - Liu, P. L. F. (2009). Tsunami modeling: Propagation. In E. Bernard, et al. (Eds.),
*The Sea, Tsunamis Ch. 3*(15th ed., pp. 295–320). Cambridge: Harvard University Press.Google Scholar - Mei, C. C., Tiassnie, M., & Yue, D. (2005).
*Theory and applications of ocean surface waves, part 1: Linear aspects*. Singapore: World Scientific.Google Scholar - Morgan, R. (2011). Top 100 stories of 2010, #84: Yardstick for killer waves, Discover. http://discovermagazine.com/2011/jan-feb/84/.
- Murty, T. S., & Loomis, H. G. (1980). A new objective tsunami magnitudes scale.
*Marine Geodesy,**4*, 267–282.CrossRefGoogle Scholar - Naranjo, L. (2013). Sizing a tsunami, sensing out planet.
*NASA Sciene Research Features 2013*, pp. 30–33. https://earthdata.nasa.gov/featured-stories/featured-research/sizing-tsunami/. - NASA release (2010). http://www.nasa.gov/topics/earth/features/tsunami_prediction.html.
- Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half space.
*Bulletin of the Seismological Society of America,**75*, 1135–1154.Google Scholar - Okal, E. A. (2015). The quest for wisdom: Lessons from 17 tsunamis, 2004–2014.
*Philosophical Transactions of the Royal Society A,**373*, 20140370. doi: 10.1098/rsta.2014.0370.CrossRefGoogle Scholar - Okal, E. A., & Synolakis, C. E. (2016). Sequencing of tsunami waves: Why the first wave is not always the largest.
*Geophysical Journal International,**204*(2), 719–735.CrossRefGoogle Scholar - Papadopoulos, G. A., & Imamura, F. (2001).
*A proposal for a new tsunami intensity scale Internat*. Tsunami sympocium 2001 Proc., Seattle, Washington, Aug. 7–10, 2001, pp. 569–577.Google Scholar - Percival, D. B., Denbo, D. W., Eble, M. C., Gica, E., Mofjeld, H. O., Spillane, M. C., et al. (2011). Extraction of tsunami source coefficients via inversion of DART® buoy data.
*Natural Hazards,**58*(1), 567–590. doi: 10.1007/s11069-010-9688-1.CrossRefGoogle Scholar - Satake, K., Nishimura, Y., Putra, P. S., Gusman, A. R., Sunendar, H., Fujii, Y., & Yulianto, E. (2013). Tsunami source of the 2010 Mentawai, Indonesia earthquake inferred from tsunami field survey and waveform modeling.
*Pure and Applied Geophysics,**170*(9–10), 1567–1582.CrossRefGoogle Scholar - Sieberg, A. (1927).
*Geologische, physikalische and angewandte Erdbebenkunde*. Jena: Verlag von Gustav Fischer.Google Scholar - Song, Y. T., Ji, C., Fu, L.-L., Zlotnicki, V., Shum, C. K., Yi, Y., & Hjorleifsdottir, V. (2005). The 26 December 2004 Tsunami source estimated from satellite radar altimetry and seismic waves.
*Geophysical Research Letters,*. doi: 10.1029/2005GL023683.Google Scholar - Song, Y. T. (2007). Detecting tsunami genesis and scales directly from coastal GPS stations.
*Geophysical Research Letters,**34*, L19602. doi: 10.1029/2007GL031681.CrossRefGoogle Scholar - Song, Y. T., Fu, L.-L., Zlotnicki, V., Ji, C., Hjorleifsdottir, V., Shum, C. K., & Yi, Y. (2008). The role of horizontal impulses of the faulting continental slope in generating the 26 December 2004 Tsunami.
*Ocean Modelling,*. doi: 10.1016/j.ocemod.2007.10.007.Google Scholar - Song, Y. T., & Han, S. C. (2011). Satellite observations defying the long-held tsunami genesis theory. In D. L. Tang (Ed.),
*Remote sensing of the changing oceans*. Berlin: Springer. doi: 10.1007/978-3-642-16541-2.Google Scholar - Song, Y. T., Fukumori, I., Shum, C. K., & Yi, Y. (2012). Merging tsunamis of the 2011 Tohoku-Oki earthquake detected over the open ocean.
*Geophysical Research Letters,**39*, L05606. doi: 10.1029/2011GL050767.Google Scholar - Stein, S., & Okal, E. A. (2005). Speed and size of the Sumatra earthquake.
*Nature,**434*(7033), 581–582.CrossRefGoogle Scholar - Synolakis, C., Bernard, E., Titov, V., Kanoglu, U., & Gonzalez, F. (2008). Validation and verification of tsunami numerical models.
*Pure and Applied Geophysics,**165*(11–12), 2197–2228. doi: 10.1007/s00024-004-0427-y.CrossRefGoogle Scholar - Tang, L., Titov, V. V., & Chamberlin, C. D. (2009). Development, testing, and applications of site-specific tsunami inundation models for real-time forecasting.
*Journal of Geophysical Research,**114*, C12025. doi: 10.1029/2009JC005476.CrossRefGoogle Scholar - Tang, L., Titov, V. V., Wei, Y., Mofjeld, H. O., Spillane, M., Arcas, D., et al. (2008). Tsunami forecast analysis for the May 2006 Tonga tsunami.
*Journal of Geophysical Research,**113*, C12015. doi: 10.1029/2008JC004922.CrossRefGoogle Scholar - Tang, L., Titov, V. V., Bernard, E. N., Wei, Y., Chamberlin, C. D., Newman, J. C., et al. (2012). Direct energy estimation of the 2011 Japan tsunami using deep-ocean pressure measurements.
*Journal of Geophysical Research,**117*, C08008. doi: 10.1029/2011JC007635.Google Scholar - Tang, L., Titov, V. V., Moore, C., & Wei, Y. (2015). Real-time assessment of the 16 September 2015 Chile Tsunami and implications for near-field forecast.
*Pure and Applied Geophysics*.**(in review)**.Google Scholar - Tanioka, Y., & Satake, K. (1996). Tsunami generation by horizontal displacement of ocean bottom.
*Geophysical Research Letters,**23*(8), 861–864.CrossRefGoogle Scholar - Titov, V. V., & Synolakis, C. E. (1995). Modeling of Breaking and Nonbreaking Long Wave Evolution and Runup using VTCS-2.
*Journal of Waterways, Ports, Coastal and Ocean Engineering,**121*(6), 308–316.CrossRefGoogle Scholar - Titov, V. V., & Synolakis, C. E. (1998). Numerical modeling of tidal wave runup.
*Journal of Waterway, Port, Coastal and Ocean Engineering,**124*(4), 157–171.CrossRefGoogle Scholar - Titov, V. V., & Gonzalez, F. I. (1997).
*Implementation and testing of the Method of Splitting Tsunami (MOST) model. NOAA Tech. Memo. ERL PMEL-112*. Seattle: Pacific Marine Environmental Laboratory.Google Scholar - Titov, V. V., Mofjeld, H. O., Gonzalez, F. I., & Newman, J. C. (1999).
*Offshore forecasting of Alaska-Aleutian subduction zone tsunamis in Hawaii, Tech. Memo. ERL PMEL-114*(p. 22). Seattle: Gov. Print. Off..Google Scholar - Titov, V. V., González, F. I., Bernard, E. N., Eble, M. C., Mofjeld, H. O., Newman, J. C., & Venturato, A. J. (2005). Real-time tsunami forecasting: Challenges and solutions.
*Natural Hazards,**35*(1), 41–58.CrossRefGoogle Scholar - Titov, V. V. (2009). Tsunami forecasting. In E. N. Bernard (Ed.),
*The Sea, Tsunamis Ch. 12*(15th ed.). Cambridge: Harvard Univ. Press.Google Scholar - Titov, V. V., Moore, C. W., Greenslade, D. J. M., Pattiaratchi, C., Badal, R., Synolakis, C. E., & Kanoglu, U. (2011). A new tool for inundation modeling: Community Modeling Interface for Tsunamis (ComMIT).
*Pure and Applied Geophysics,**168*, 2121–2131. doi: 10.1007/s00024-011-0292-4.CrossRefGoogle Scholar - Wei, Y., Bernard, E. N., Tang, L., Weiss, R., Titov, V. V., Moore, C., et al. (2008). Real-time experimental forecast of the Peruvian tsunami of August 2007 for US coastlines.
*Geophysical Research Letters,**35*, L04609. doi: 10.1029/2007GL032250.Google Scholar - Wei, Y., Chamberlin, C., Titov, V. V., Tang, L., & Bernard, E. N. (2012). Modeling of 2011 Japan Tsunami: Lessons for near-field forecast.
*Pure and Applied Geophysics*. doi: 10.1007/s00024012z. - Wei, Y., Chamberlin, C., Titov, V., Tang, L., & Bernard, E. N. (2013). Modeling of the 2011 Japan tsunami—lessons for near-field forecast.
*Pure and Applied Geophysics,**170*(6–8), 1309–1331. doi: 10.1007/s00024-012-0519-z.CrossRefGoogle Scholar - Wei, Y., Newman, A. V., Hayes, G. P., Titov, V. V., & Tang, L. (2014). Tsunami forecast by joint inversion of real-time tsunami waveforms and seismic or GPS data: Application to the Tohoku 2011 tsunami.
*PPure and Applied Geophysics,**171*(12), 3281–3305. doi: 10.1007/s00024-014-0777-z.CrossRefGoogle Scholar - Xu, Z., & Song, Y. T. (2013). Combining the all-source Green’s functions and the GPS-derived source for fast tsunami prediction—illustrated by the March 2011 Japan tsunami.
*Journal of Atmospheric and Oceanic Technology*. doi: 10.1175/JTECH-D-12-00201.1.Google Scholar