Skip to main content

Geocomputation and Spatial Modelling for Geographical Drought Risk Assessment: A Case Study of the Hustopeče Area, Czech Republic

Abstract

The phenomenon of drought is serious in many landscapes with continental patterns of climate. In fact, drought risk is usually assessed in terms of prevailing issue (meteorological, hydrological, agronomical, etc.) and not in terms of complex landscape features. A procedure for detailed geographical drought risk modelling has been developed using recent meteorological data of dry period and prior precipitations, as well as a digital elevation model and geographic data layers of natural landscape features and land cover. The current version of the procedure starts with meteorological data (temperature and precipitation) processing followed by the use of soil and geological data and land cover, the national CORINE LC 2006 CZ database, for assessing the impact of the local natural features on drought risk. The methodology is based on GIS tools, geodata of the geological structure of the area (water holding capacity of the substrate, the horizontal and vertical water conductivity), soil cover (in agricultural and forested areas, soil types and kinds), landscape cover (land use), relief (digital elevation model and its derivatives), temperature and precipitation data from neighbouring representative meteorological and climate stations. The procedure uses regression equation for temperature and precipitation risk modelling, fuzzy standardization for estimation of different water retention within land cover categories and expert estimation for risk categories within rocks and soils. The final calculation is based on spatial decision-making techniques, especially the weighted sum method with a natural breaks reclassification algorithm. Combining geodata of soils, the geological environment and the active surface with their computed humidity conditions, it is possible to identify areas with a graded risk of geographic drought. The final results do not represent partial values, but identify five risk classes in the study area illustrating a possible level of geographical drought risk.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Basist, A., Bell, G., Meentemeyer, V. (1994). Statistical relationships between topography and precipitation patterns. Journal of Climate, 7, pp. 1305–1315.

  2. Benetin, J. (1958). Pohyb vody v zemine. Bratislava, Slovenské vydavateľstvo technickej literatúry, 315 p.

  3. Blazejczyk, K. (1975). Wyznaczanie stopnia przewietrzania dolin. Przeglad geograficzny, 47, pp. 153–161.

  4. Blinka, P. (2002). Metoda hodnocení sucha. In Rožnovský, J., Litschmann, T. (ed.): XIV. Česko-slovenská bioklimatologická konference. Lednice na Moravě,pp. 32–44.

  5. Brázdil, R., Kirchner, K. (2007). Vybrané přírodní extrémy a jejich dopady na Moravě a ve Slezsku. Brno, Masarykova univerzita, 432 p.

  6. Bryant, E. A. (1991). Natural Hazards. Cambridge University Press, Cambridge–New York–Melbourne, 294 p.

  7. Chapman, L. (2000). Assessing topographic exposure. Meteorological Applications, 7, pp. 335-340.

  8. Crutchfield, H. J. (1983) General Climatology. Englewood Cliffs, Prentice-Hall, 464 p.

  9. Dezman, L. E., Shafer, B. A., Simpson, H. D., Danielson, J.A. (1983). Development of a Surface Water Supply Index—A Drought Severity Indicator for Colorado. Proc., International Symposium on Hydrometeorology, Bethesda American Water Resources Association, pp. 337–341.

  10. Dracup, J. A., Lee, K. S., Paulson, E. G. (1980). On the definition of droughts. Water Res. Res., 16, pp. 297–302.

  11. Dragota, C. S., Marculet, C., Mic, L. E., Grofu, A. (2012). Mapping dryness time-scales in the curvature Carpathians and Subcarpathians (Romania) by the standardized precipitation index. Romanian Journal of Geography, 52, pp. 137–142.

  12. Earl, H., Davis, R. F. (2003). Effect of drought stress on leaf and whole canopy radiation use efficiency and yield of maize. Agronomy Journal, 95, pp. 688–696.

  13. European Environment Agency (EEA) (2014). Corine Land Cover 2006 seamless vector data [online], accessed [27.8. 2015], available from http://www.eea.europa.eu/data-and-maps/data/clc-2006-vector-data-version-3.

  14. Fraisse, C. W., Breuer, N. E., Zierden, D, Bellow, J. G., Paz, J., Cabrera, V. E., Garcia, A., Ingram, K. T., Hatch, U., Hoogenboom, G., Jones, J. W., O’Brien, J. J. (2006). A climate forecast information system for agricultural risk management in the southeastern USA. Computers and Electronics in Agriculture, 53, pp. 13–27.

  15. Hájek, O., Smékalová, L., Novosák, J. (2014). Spatial coherence of national and European regional policy: The insights from the Czech Republic and Slovakia. Politická ekonomie, 62, pp. 630–644.

  16. Hawkes, J. C. (2004). A review of European Union funded research into Mediterranean desertification processes. Advances in Environmental Monitoring and Modelling, 1, pp. 1–39.

  17. Hayes, M. J. (2003). Drought indices. U.S. National Drought Mitigation Center – NDMC [online], accessed [27.8. 2015], available from http://enso.unl.edu/ndme/enigma/indices.htm#spi

  18. Heathcote, R. L. (1999). Drought, Impacts and Management. In Encyclopaedia of Environmental Science. Dordrecht, Kluwer Academic, pp. 137–139.

  19. Koldovský, M. (1970). Mezní vrstva ovzduší. Praha, Hydrometeorologický ústav, 27 p.

  20. Kolejka, J., Kretek, M. (1997). Odhad rizika dopadů klimatických změn na vybraná chráněná území přírody Opavska pomocí GIS. Geografie, 9, pp. 4–22.

  21. Kolejka, J., Kretek, M. (2001). Klimatické změny a ochrana přírody. GIS jako účelný nástroj pro hodnocení rizik. GEOinfo, 1, pp. 28–31.

  22. Krásný, J. (2012). Podzemní vody České republiky: regionální hydrogeologie prostých a minerálních vod. 1st edition. Praha, Česká geologická služba, 1143 p.

  23. Loucks, D.P., Gladwell, J.S. (1999). Sustainability criteria for water resources systems. Cambridge, UK: Cambridge University Press, International Hydrology Series, 156 p.

  24. Makbul, S., Guler, N., Saruhan, N., Durmus, N., Guven, S. (2011). Changes in anatomical and physiological parameters of soybean under drought stress. Turkish Journal of Botany, 35, pp. 369–377.

  25. Matějka, A., Stráník, Z. (1960a), Geologická mapa ČSR. List M-33-118-A-d šakvice. Měřítko 1: 25 000. Brno Geografický ústav ČSAV.

  26. Matějka, A., Stráník, Z. (1960b), Geologická mapa ČSR. List M-33-118-A-b Hustopeče. Měřítko 1: 25 000. Brno Geografický ústav ČSAV.

  27. McKee, T. B., Doesken, N. J., Kleist, J. (1993). The relationship of drought frequency and duration to time scales. In Preprints, 8th Conference on Applied Climatology, Anaheim, pp. 179–184.

  28. Mo, C. K. (2011). Drought onset and recovery over the United States. Journal of Geophysical Research, 116, pp. 1–7.

  29. Munzar, J. (2004). Extreme droughts in Central Europe in the preinstrumental period. Moravian geographical reports. 12, pp. 13–23.

  30. NDMC. (1996). North American Drought: A Paleo Perspective, [online], accessed [27.8. 2015], available from http://www.drought.unl.edu/monitor/spi.htm.

  31. Oladipo, E. O. (1985). A comparative performance analysis of three meteorological drought indices. Int. J. Climatol., 5, pp. 655–664.

  32. Palát, M., Dvořáková, Š., Kupková, N. (2012). Consumption of beef in the Czech Republic. Agricultural Economics. 58, pp. 308–314.

  33. Palmer, W. C. (1965). Meteorological drought, Research paper No. 45, Washington, D.C, U.S. Weather Bureau, 65 p.

  34. Palmer, W.C. (1968). Keeping track of crop moisture conditions, nationwide: The new crop moisture index, Weatherwise, 2, pp. 156–161.

  35. Palusková, K. (1967). Mapa kvartérních sedimentů. List M-33-118-A-a Pohořelice. Měřítko 1: 25 000. Brno, Geografický ústav ČSAV.

  36. Potts, M. D. (2003). Drought in a Bornean everwet rain forest. Journal of Ecology, 91, pp. 67–474.

  37. Research Institute for Soil and Water Conservation (RISWC). (2011). Nabídka mapových a datových produktů – Hydrologické charakteristiky. Praha, Výzkumný ústav meliorací a ochrany půdy, 23 p.

  38. Reynolds, J. F., Stafford Smith, D. M. (2002). Do humans cause deserts? In: Global Desertification: Do Humans Cause Deserts? (ed. J.F. Reynolds and D.M. Stafford Smith). Berlin, Dahlem Univ. Press, pp. 1–21.

  39. Rhee, J. (2007). A Regional Drought Monitoring System for the Carolina. Dissertation. Department of Geography, Columbia, University of South Carolina, 160 p.

  40. Rožnovský, J. (1998). Dynamics of occurrence of dry periods in the region of south Moravia and possible reduction of the effect of drought in agriculture. Acta univ. agric. et silvic. Mendel. Brun, 46, pp. 63–68.

  41. Ruda, A. (2010). Contribution to assessment of the tourism impact on landscape. Acta Universitatis Carolinae Geographica, 1, pp. 61–74.

  42. Ruda, A., Musil, M. (2013). The organization and administration of GIS in regional offices. In Klimova, V., Zitek, V. (ed.): 16th International Colloquium on Regional Sciences Location: Valtice, JUN 19-21, pp. 444–450.

  43. Saaty, T. L. (1980). The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation. New York, McGraw-Hill, 287 p.

  44. Shukla, S., Wood, A. W. (2008). Use of a standardized runoff index for characterizing hydrologic drought. Geophysical research letters, 35, pp. 1–7.

  45. Sima, M., Popovici, E. A., Balteanu, D., Muci, D. M., Kucsicsa, G., Dragota, C., Grigorescu, I. (2015). A farmer-based analysis of climate change adaptation options of agriculture in the Baragan Plain, Romania. Earth Perspectives, 2, pp. 1–21.

  46. Stráník, Z. (red.) (1978). Základní geologická mapa ČSR. List 34-211 Šitbořice. Měřítko 1: 25 000. Ústřední ústav geologický, Brno.

  47. Stráník, Z. (red.) (1982). Základní geologická mapa ČSR. List 34-213 Hustopeče. Měřítko 1: 25 000. Ústřední ústav geologický, Brno

  48. Tomášek, M. (red.). (1994). Půdní mapa ČR. List 34-21 Hustopeče. Mapa měřítka 1:50 000. Český geologický ústav, Praha.

  49. Trnka, M., Kyselý, J., Možný, M., Dubrovský, M. (2009). Changes in central-european soil-moisture availability and circulation patterns in 1881-2005. International Journal of Climatology, 29, pp. 655–672.

  50. Tsakiris, G., Vangelis, H. (2005). Establishing a drought index incorporating evapotranspiration. European Water, 9, pp. 3–11.

  51. Vašků, Z. (1971). Metodika vyhodnocení potřeby odvodnění a závlah. In Ambros Z. (ed.) Praktikum geobiocenologie, Brno, pp. 1–98.

  52. Vitas, A., Erlickytë, R. (2007). Influence of Droughts to the Radial Growth of Scots Pine (Pinus sylvestris L.) at Different Site Conditions. Baltic Forestry, 13, pp. 10–16.

  53. Wilhite, D. A., Glantz, M. H. (1985). Understanding the drought phenomenon: The role of definitions. Water International, 10, pp. 111–120.

  54. Wilhite, D. A., Hayes, M. J., Svoboda, M. D. (2000a). Monitoring drought using the standardized precipitation index. In Drought: A Global Assessment. Edited by D.A. Wilhite. Routledge, London, UK, pp. 168–180.

  55. Wilhite, D. A., Hayes, M., Knutson, C., Smith, K. H. (2000b). Planning for drought: Moving from crisis to risk management. Journal of the American Water Resources Association, 36, pp. 697–710.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Aleš Ruda.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ruda, A., Kolejka, J. & Batelková, K. Geocomputation and Spatial Modelling for Geographical Drought Risk Assessment: A Case Study of the Hustopeče Area, Czech Republic. Pure Appl. Geophys. 174, 661–678 (2017). https://doi.org/10.1007/s00024-016-1296-x

Download citation

Keywords

  • Geographical drought
  • aridity
  • spatial decision making
  • geocomputation
  • risk levels
  • environmental modelling