Skip to main content
Log in

Reconstruction of Far-Field Tsunami Amplitude Distributions from Earthquake Sources

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The probability distribution of far-field tsunami amplitudes is explained in relation to the distribution of seismic moment at subduction zones. Tsunami amplitude distributions at tide gauge stations follow a similar functional form, well described by a tapered Pareto distribution that is parameterized by a power-law exponent and a corner amplitude. Distribution parameters are first established for eight tide gauge stations in the Pacific, using maximum likelihood estimation. A procedure is then developed to reconstruct the tsunami amplitude distribution that consists of four steps: (1) define the distribution of seismic moment at subduction zones; (2) establish a source-station scaling relation from regression analysis; (3) transform the seismic moment distribution to a tsunami amplitude distribution for each subduction zone; and (4) mix the transformed distribution for all subduction zones to an aggregate tsunami amplitude distribution specific to the tide gauge station. The tsunami amplitude distribution is adequately reconstructed for four tide gauge stations using globally constant seismic moment distribution parameters established in previous studies. In comparisons to empirical tsunami amplitude distributions from maximum likelihood estimation, the reconstructed distributions consistently exhibit higher corner amplitude values, implying that in most cases, the empirical catalogs are too short to include the largest amplitudes. Because the reconstructed distribution is based on a catalog of earthquakes that is much larger than the tsunami catalog, it is less susceptible to the effects of record-breaking events and more indicative of the actual distribution of tsunami amplitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abe K. (1979), Size of great earthquake of 1837–1974 inferred from tsunami data, J. Geophys. Res., 84, 1561–1568.

  • Abe K. (1989), Quanitification of tsunamigenic earthquakes by the Mt scale, Tectonophys., 166, 27–34.

  • Ben-Menahem A., Rosenman M. (1972), Amplitude patterns of tsunami waves from submarine earthquakes, J. Geophys. Res., 77, 3097–3128.

  • Bird P., Kagan Y.Y. (2004), Plate-tectonic analysis of shallow seismicity: apparent boundary width, beta-value, corner magnitude, coupled lithosphere thickness, and coupling in 7 tectonic settings, Bull. Seismol. Soc. Am., 94, 2380–2399.

  • Burroughs S.M., Tebbens S.F. (2001), Upper-truncated power laws in natural systems, Pure Appl. Geophys., 158, 741–757.

  • Burroughs S.M., Tebbens S.F. (2005), Power law scaling and probabilistic forecasting of tsunami runup heights, Pure Appl. Geophys., 162, 331–342.

  • Clauset A., Shalizi C.R., Newman M.E.J. (2009), Power-law distributions in empirical data, SIAM Review, 51, 661–703.

  • Comer R.P. (1980), Tsunami height and earthquake magnitude: theoretical basis of an empirical relation, Geophys. Res. Lett., 7, 445–448.

  • Ekström G., Nettles M. (1997), Calibration of the HGLP seismograph network and centroid-moment tensor analysis of significant earthquakes of 1976, Physics of the Earth and Planetary Interiors, 101, 221–246.

  • Engdahl E.R., Villaseñor A. (2002), Global seismicity: 1900-1999. In: Lee WHK, Kanamori H, Jennings PC, Kisslinger C (eds), International Handbook of Earthquake and Engineering Seismology, Part A. Academic Press, San Diego, pp. 665–690.

  • Geist E.L. (1999), Local tsunamis and earthquake source parameters, Adv. Geophys., 39, 117–209.

  • Geist E.L. (2012), Phenomenology of tsunamis II: scaling, Event Statistics, and Inter-Event Triggering, Adv. Geophys., 53, 35–92.

  • Geist E.L. (2014), Explanation of temporal clustering of tsunami sources using the epidemic-type aftershock sequence model, Bull. Seismol. Soc. Am., 104, 2091–2103.

  • Geist E.L., Parsons T. (2006), Probabilistic analysis of tsunami hazards, Natural Hazards, 37, 277–314.

  • Geist E.L., Parsons T. (2011), Assessing historical rate changes in global tsunami occurrence, Geophys. J. Int., 187, 497–509.

  • Geist E.L., Parsons T. (2014), Undersampling power-law size distributions: effect on the assessment of extreme natural hazards, Natural Hazards, 72, 565-595. doi:10.1007/s11069-013-1024-0.

  • Geist E.L., Parsons T., ten Brink U.S., Lee H.J. (2009), Tsunami Probability. In: Bernard EN, Robinson AR (eds), The Sea, v. 15. Harvard University Press, Cambridge, Massachusetts, pp. 93–135.

  • Geist E.L., ten Brink U.S., Gove M. (2014), A framework for the probabilistic analysis of meteotsunamis, Natural Hazards, 74, 123-142. doi:10.1007/s11069-014-1294-1.

  • Geller R.J., Kanamori H. (1977), Magnitudes of great shallow earthquakes from 1904 to 1952, Bull. Seismol. Soc. Am., 67, 587–598.

  • Gutenberg B., Richter C.F. (1944), Frequency of earthquakes in California, Bull. Seismol. Soc. Am., 34, 185–188.

  • Hatori T. (1971), Tsunami sources in Hokkaido and southern Kuril regions, Bulletin of the Earthquake Research Institute, 49, 63–75.

  • Horrillo J., Knight W., Kowalik Z. (2008), Kuril Islands tsunami of November 2006: 2. Impact at Crescent City by local enhancement, J. Geophys. Res., 113, doi:10.1029/2007JC004404.

  • Huber P.J. (1967). The behavior of maximum likelihood estimates under nonstandard conditions. In: Proceedings of the fifth Berkeley symposium on mathematica statistics and probability, pp. 221–233.

  • Ishimoto M., Iida K. (1939), Observations of earthquakes registered with the microseismograph constructed recently, Bulletin of the Earthquake Research Institute, 17, 443–478.

  • Kagan Y.Y. (1997), Seismic moment-frequency relation for shallow earthquakes: regional comparison, J. Geophys. Res., 102, 2835–2852.

  • Kagan Y.Y. (1999), Universality of the seismic-moment-frequency relation, Pure Appl. Geophys., 155, 537–573.

  • Kagan Y.Y. (2002a), Seismic moment distribution revisited: I. Statistical results, Geophys. J. Int., 148, 520–541.

  • Kagan Y.Y. (2002b), Seismic moment distribution revisited: II. Moment conservation principle, Geophys. J. Int., 149, 731–754.

  • Kagan Y.Y. (2010), Earthquake size distribution: power-law with exponent β = 1/2?, Tectonophys., 490, 103–114.

  • Kagan Y.Y., Bird P., Jackson D.D. (2010), Earthquake patterns in diverse tectonic zones of the globe, Pure Appl. Geophys., 167, 721–741.

  • Kagan Y.Y., Jackson D.D. (2013), Tohoku earthquake: a surprise?, Bull. Seismol. Soc. Am., 103, 1181–1194.

  • Kempthorne O., Folks L. (1971), Probability, statistics, and data analysis. Iowa State University Press, Ames, Iowa.

  • López-Ruiz R., Vázquez-Prada M., Gómez J.B., Pacheco A.F. (2004), A model of characteristic earthquakes and its implications for regional seismicity, Terra Nova, 16, 116–120.

  • Main I., Naylor M., Greenhough J., Touati S., Bell A.F., McCloskey J. (2011), Model selection and uncertainty in earthquake hazard analysis. In: Faber M, Köhler J, Nishijima K (eds), Applications of Statistics and Probability in Civil Engineering. CRC Press, Leiden, The Netherlands, pp. 735–743.

  • McCaffrey R. (2008), Global frequency of magnitude 9 earthquakes, Geology, 36, 263–266.

  • Okal E.A. (1988), Seismic parameters controlling far-field tsunami amplitudes: a review, Natural Hazards, 1, 67–96.

  • Olami Z., Feder H.J.S., Christensen K. (1992), Self-organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes, Physical Review Letters, 68, 1244–1247.

  • Pacheco J.F., Sykes L.R. (1992), Seismic moment catalog of large shallow earthquakes, 1900 to 1989, Bull. Seismol. Soc. Am., 82, 1306–1349.

  • Parsons T., Console R., Falcone G., Murru M., Yamashina K. (2012), Comparison of characteristic and Gutenberg-Richter models for time-dependent M  7.9 earthquake probability in the Nankai-Tokai subduction zone, Japan, Geophys. J. Int., doi:10.1111/j.1365-1246X.2012.05595.x.

  • Parsons T., Geist E.L. (2009), Is there a basis for preferring characteristic earthquakes over a Gutenberg-Richter distribution in probabilistic earthquake forecasting?, Bull. Seismol. Soc. Am., 99, 2012–2019. doi:10.1785/0120080069.

  • Parsons T., Geist E.L. (2012), Were global M  8.3 earthquake time intervals random between 1900–2011?, Bull. Seismol. Soc. Am., 102, doi:10.1785/0120110282.

  • Parsons T., Geist E.L. (2014), The 2010–2014.3 global earthquake rate increase, Geophys. Res. Lett., 41, 4479–4485. doi:10.1002/2014GL060513.

  • Pawitan Y. (2001), In all likelihood: statistical modelling and inference using likelihood. Oxford University Press, Oxford.

  • Pelayo A.M., Wiens D.A. (1992), Tsunami earthquakes: slow thrust-faulting events in the accretionary wedge, J. Geophys. Res., 97, 15,321–315,337.

  • Rabinovich A.B., Thomson R.E. (2007), The 26 December 2004 Sumatra tsunami: analysis of tide gauge data from the world ocean Part 1. Indian Ocean and South Africa, Pure Appl. Geophys., 164, 261–308.

  • Satake K., Okada M., Abe I. (1988), Tide gauge response to tsunamis: measurements at 40 tide gauge stations in Japan, Journal of Marine Research, 46, 557–571.

  • Sornette D. (2009), Probability distribution in complex systems. In: Meyers RA (ed), Encyclopedia of Complexity and Systems Science. Springer, New York, pp. 7009–7024.

  • Vere-Jones D., Robinson R., Yang W. (2001), Remarks on the accelerated moment release model: problems of model formulation, simulation and estimation, Geophys. J. Int., 144, 517–531.

  • Wesnousky S.G. (1994), The Gutenberg-Richter or characteristic earthquake distribution, which is it?, Bull. Seismol. Soc. Am., 84, 1940–1959.

  • White H. (1980), A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity, Econometrica, 48, 817–838.

  • Zöller G. (2013), Convergence of the frequency-magnitude distribution of global earthquakes: maybe in 200 years, Geophys. Res. Lett., 40, 3873–3877.

Download references

Acknowledgments

The authors thank Robert Kayen, two anonymous reviewers, and Editor Alexander Rabinovich for their constructive comments on this study and manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric L. Geist.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geist, E.L., Parsons, T. Reconstruction of Far-Field Tsunami Amplitude Distributions from Earthquake Sources. Pure Appl. Geophys. 173, 3703–3717 (2016). https://doi.org/10.1007/s00024-016-1288-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-016-1288-x

Keywords

Navigation