Advertisement

Pure and Applied Geophysics

, Volume 173, Issue 4, pp 1063–1077 | Cite as

Tsunami Characteristics Along the Peru–Chile Trench: Analysis of the 2015 Mw8.3 Illapel, the 2014 Mw8.2 Iquique and the 2010 Mw8.8 Maule Tsunamis in the Near-field

  • R. Omira
  • M. A. Baptista
  • F. Lisboa
Article
Part of the following topical collections:
  1. Illapel, Chile, Earthquake on September 16th, 2015

Abstract

Tsunamis occur quite frequently following large magnitude earthquakes along the Chilean coast. Most of these earthquakes occur along the Peru–Chile Trench, one of the most seismically active subduction zones of the world. This study aims to understand better the characteristics of the tsunamis triggered along the Peru–Chile Trench. We investigate the tsunamis induced by the Mw8.3 Illapel, the Mw8.2 Iquique and the Mw8.8 Maule Chilean earthquakes that happened on September 16th, 2015, April 1st, 2014 and February 27th, 2010, respectively. The study involves the relation between the co-seismic deformation and the tsunami generation, the near-field tsunami propagation, and the spectral analysis of the recorded tsunami signals in the near-field. We compare the tsunami characteristics to highlight the possible similarities between the three events and, therefore, attempt to distinguish the specific characteristics of the tsunamis occurring along the Peru–Chile Trench. We find that these three earthquakes present faults with important extensions beneath the continent which result in the generation of tsunamis with short wavelengths, relative to the fault widths involved, and with reduced initial potential energy. In addition, the presence of the Chilean continental margin, that includes the shelf of shallow bathymetry and the continental slope, constrains the tsunami propagation and the coastal impact. All these factors contribute to a concentrated local impact but can, on the other hand, reduce the far-field tsunami effects from earthquakes along Peru–Chile Trench.

Keywords

Peru–Chile Trench tsunami local impact numerical modeling spectral analysis 

Notes

Acknowledgments

This work is funded by project ASTARTE - Assessment, STrategy And Risk Reduction for Tsunamis in Europe, Grant 603839, 7th FP (ENV.2013.6.4-3). The authors would like to thank the colleagues from the USA National Oceanographic and Atmospheric Administration (NOAA) for making available the DART stations records used in this study. We also thank J. M. Miranda for the internal review of the manuscript. We are grateful to the Editor A. Rabinovich, to E. Geist and to the anonymous reviewer for their timely and helpful reviews, which improved the manuscript.

References

  1. An, C., Sepúlveda, I., and Liu, P. L. F. (2014). Tsunami source and its validation of the 2014 Iquique, Chile, earthquake. Geophysical Research Letters, 41(11), 3988–3994.CrossRefGoogle Scholar
  2. Aránguiz, R., González, G., González, J., Catalán, P.A., Cienfuegos, R., Yagi, Y., Okuwaki, R., Urra, L., Contreras, K., Del Rio, I. and Rojas, C. (2016). The 16 September 2015 Chile Tsunami from the Post-Tsunami Survey and Numerical Modeling Perspectives. Pure Appl. Geophys., 173 (2), 333–348.CrossRefGoogle Scholar
  3. Berkman, S. C., and Symons, J. M. (1964), The Tsunami of May 22, 1960 as Recorded at Tide Stations. U.S. Department of Commerce, Coast and Geodetic Survey, pp.79.Google Scholar
  4. Catalán, P., Aránguiz, R., González, G., Tomita, T., Cienfuegos, R., González, J., Shrivastava, M.N., Kumagai, K., Mokrani, C., Cortés, P. and Gubler, A. (2015). The 1 April 2014 Pisagua tsunami: Observations and modeling. Geophys. Res. Lett., 42(8), 2918–2925.CrossRefGoogle Scholar
  5. Contreras-López, M., Winckler, P., Sepúlveda, I., Andaurlvarez, A., Cortés-Molina, F., Guerrero, C.J., Mizobe, C.E., Igualt, F., Breuer, W., Beyá, J.F. and Vergara, H. (2016). Field survey of the 2015 Chile tsunami with emphasis on coastal wetland and conservation areas. Pure Appl. Geophys., 173(2), 349–367.CrossRefGoogle Scholar
  6. DeMets, C., Gordon, R. G., and Argus, D. F. (2010), Geologically current plate motions. Geophys. J. Int., 181, 1–80.CrossRefGoogle Scholar
  7. Fritz, H. M., Petroff, C. M., Catalán, P. A., Cienfuegos, R., Winckler, P., Kalligeris, N., Weiss, R., Barrientos, S.E., Meneses, G., Valderas-Bermejo, C., Ebeling, C., Papadopulos, A., Contreras, M., Almar, R., Dominguez, J. C., and Synolakis, C. E. (2011). Field survey of the 27 February 2010 Chile tsunami. Pure Appl. Geophys., 168(11), 1989–2010.CrossRefGoogle Scholar
  8. Fujii, Y., and Satake, K. (2013). Slip distribution and seismic moment of the 2010 and 1960 Chilean earthquakes inferred from tsunami waveforms and coastal geodetic data. Pure Appl. Geophys., 170(9–10), 1493–1509.CrossRefGoogle Scholar
  9. Geist, E. L., Lynett, P. J., and Chaytor, J. D. (2009), Hydrodynamic modeling of tsunamis from the Currituck landslide. Marine Geology, 264(1), 41–52.CrossRefGoogle Scholar
  10. Geist, E. L. (2013). Near-field tsunami edge waves and complex earthquake rupture. Pure Appl. Geophys., 170(9–10), 1475–1491.CrossRefGoogle Scholar
  11. Gusman, A. R., Murotani, S., Satake, K., Heidarzadeh, M., Gunawan, E., Watada, S., and Schurr, B. (2015). Fault slip distribution of the 2014 Iquique, Chile, earthquake estimated from ocean‐wide tsunami waveforms and GPS data. Geophys. Res. Lett., 42(4), 1053–1060.CrossRefGoogle Scholar
  12. Heidarzadeh, M., Satake, K., Murotani, S., Gusman, A. R., and Watada, S. (2014). Deep-Water Characteristics of the Trans-Pacific Tsunami from the 1 April 2014 M w 8.2 Iquique, Chile Earthquake. Pure Appl. Geophys., 172(3–4), 719–730.Google Scholar
  13. Heidarzadeh, M., Murotani, S., Satake, K., Ishibe, T., and Gusman A. R. (2015). Source model of the 16 September 2015 Illapel, Chile Mw8.4 earthquake based on teleseismic and tsunami data. Geophys. Res. Lett., 42, doi: 10.1002/2015GL067297.Google Scholar
  14. Kajiura, K. (1970). Tsunami source, energy and the directivity of wave radiation. Bull. Earthquake Research Institute, 48, 835–869.Google Scholar
  15. Kajiura, K. (1981). Tsunami energy in relation to parameters of the earthquake fault model. Bull. Earthquake Research Institute, 56, 415–440.Google Scholar
  16. Kanamori, H. (1977). The energy release in great earthquakes. Journal of Geophysical Research, 82(20), 2981–2987.CrossRefGoogle Scholar
  17. Lay, T., Ammon, C. J., Kanamori, H., Koper, K. D., Sufri, O., and Hutko, A. R. (2010), Teleseismic inversion for rupture process of the 27 February 2010 Chile (M-w 8.8) earthquake. Geophys. Res. Lett., 37, L13301, doi: 10.1029/2010GL043379.CrossRefGoogle Scholar
  18. Lay, T., Yue, H., Brodsky, E. E., and An, C. (2014), The 1 April 2014 Iquique, Chile, Mw 8.1 earthquake rupture sequence. Geophys. Res. Lett., 41(11), 3818–3825.CrossRefGoogle Scholar
  19. Lomnitz, C. (2004), Major earthquakes of Chile: a historical survey, 15351960. Seismological Research Letters, 75(3), 368–378.CrossRefGoogle Scholar
  20. Lorito, S., Romano, F., Atzori, S., Tong, X., Avallone, A., Mccloskey, J., Cocco, M., Boschi, E., and Piayanesi, A. (2011), Limited overlap between the seismic gap and coseismic slip of the great 2010 Chile earthquake, Nature Geoscience, 4(3), 173–177.CrossRefGoogle Scholar
  21. Miranda, J.M., Luis, J., Reis, C., Omira, R., and Baptista, M.A. (2014), Validation of NSWING, a multi-core finite difference code for tsunami propagation and run-up. American Geophysical Union (AGU) Fall Meeting, San Francisco. Paper Number : S21A-4390. Session Number and Title: S21A, Natural Hazards.Google Scholar
  22. Moreno, M., Rosenau, M., and Oncken, O. (2010), 2010 Maule earthquake slip correlates with pre-seismic locking of Andean subduction zone, Nature, 467(7312), 198–202.CrossRefGoogle Scholar
  23. NOAA (2015), https://www.ngdc.noaa.gov/hazard/16sep2015.html. last accessed 20/11/2015.
  24. Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bull Seismol. Soc. Am., 75(4), 1135–1154.Google Scholar
  25. Okal, E. A., and Synolakis, C. E. (2003). A theoretical comparison of tsunamis from dislocations and landslides, Pure Appl. Geophys., 160(10–11), 2177–2188.CrossRefGoogle Scholar
  26. Omira, R., Vales, D., Marreiros, C., and Carrilho, F. (2015). Large submarine earthquakes that occurred worldwide in a 1-year period (June 2013 to June 2014)a contribution to the understanding of tsunamigenic potential, Nat. Hazards Earth Syst. Sci., 15, 2183–2200.CrossRefGoogle Scholar
  27. Pollitz, F.F., Brooks, B., Tong, X., Bevis, M.G., Foster, J.H., Bürgmann, R., Smalley, R., Vigny, C., Socquet, A., Ruegg, J.C. and Campos, J. (2011). Coseismic slip distribution of the February 27, 2010 Mw 8.8 Maule, Chile earthquake, Geophys. Res. Lett., 38(9), doi: 10.1029/2011GL047065.Google Scholar
  28. Pulido, N., Yagi, Y., Kumagai, H., and Nishimura, N. (2011). Rupture process and coseismic deformations of the 27 February 2010 Maule earthquake, Chile, Earth Planets and Space, 63(8), 955–959.CrossRefGoogle Scholar
  29. Rabinovich, A. B., and Thomson, R. E. (2007). The 26 December 2004 Sumatra tsunami: Analysis of tide gauge data from the world ocean Part 1. Indian Ocean and South Africa. Pure Appl. Geophys., 164, 261–308.CrossRefGoogle Scholar
  30. Rabinovich, A.B., Candella, R.N., and Thomson, R.E. (2013a). The open ocean energy decay of three recent trans-Pacific tsunamis, Geophys. Res. Lett., 40(12):3157–3162.CrossRefGoogle Scholar
  31. Rabinovich, A.B., Thomson, R.E. and Fine, I.V. (2013b). The 2010 Chilean tsunami off the west coast of Canada and the northwest coast of the United States, Pure App. Geophys., 170(9–10), 1529–1565.CrossRefGoogle Scholar
  32. Saito, T., Matsuzawa, T., Obara, K., and Baba, T. (2010). Dispersive tsunami of the 2010 Chile earthquake recorded by the high‐sampling‐rate ocean‐bottom pressure gauges, Geophys. Res. Lett., 37(23). L23303, doi: 10.1029/2010GL045290.CrossRefGoogle Scholar
  33. Tong, X. P., Sandwell, D., Luttrell, K., Brooks, B., Bevis, M., Shimada, M., Foster, J., Smalley, R., Parra, H., Soto, J. C. B., Blanco, M., Kendrick, E., Genrich, J., and Caccamise, D. J. (2010), The 2010 Maule, Chile earthquake: Downdip rupture limit revealed by space geodesy, Geophys. Res. Lett., 37. L24311, doi: 10.1029/2010GL045805.CrossRefGoogle Scholar
  34. USGS (2014), US Geological Survey, M8.2 and Aftershocks Offshore Northern Chile Earthquake of 1 April 2014, available at: http://earthquake.usgs.gov/earthquakes/eqarchives/poster/2014/20140401.pdf , last accessed 10/01/2016.
  35. USGS (2015), US Geological Survey, earthquake general summary available at: http://earthquake.usgs.gov/earthquakes/eventpage/us20003k7a#general_summary , last accessed 20/11/2015.
  36. Wu, T.-R. and Ho, T.-C. (2011). High resolution tsunami inversion for 2010 Chile earthquake, Nat. Hazards Earth Syst. Sci., 11, 3251–3261.CrossRefGoogle Scholar
  37. Yamazaki, Y., and Cheung, K. F. (2011). Shelf resonance and impact of near-field tsunami generated by the 2010 Chile earthquake, Geophys. Res. Lett., 38(12), L12605, doi: 10.1029/2011GL047508.CrossRefGoogle Scholar
  38. Yagi, Y., Okuwaki, R., Enescu, B., Hirano, S., Yamagami, Y., Endo, S., and Komoro, T. (2014). Rupture process of the 2014 Iquique Chile Earthquake in relation with the foreshock activity. Geophys. Res. Lett., 41(12), 4201–4206.CrossRefGoogle Scholar
  39. Ye, L., Lay, T., Kanamori, H., and Koper, K. D. (2016). Rapidly Estimated Seismic Source Parameters for the 16 September 2015 Illapel, Chile Mw 8.3 Earthquake. Pure App. Geophys., 173(2), 321–332.Google Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Instituto Português do Mar e da Atmosfera, IPMALisbonPortugal
  2. 2.Instituto Dom Luiz, FCUL, University of LisbonLisbonPortugal
  3. 3.Instituto Superior de Engenharia de Lisboa, Instituto Poltécnico de LisboaLisbonPortugal

Personalised recommendations