Skip to main content
Log in

Present-Day 3D Velocity Field of Eastern North America Based on Continuous GPS Observations

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript


The Saint Lawrence River valley in eastern Canada was studied using observations of continuously operating GPS (CGPS) stations. The area is one of the most seismically active regions in eastern North America characterized by many earthquakes, which is also subject to an ongoing glacial isostatic adjustment. We present the current three-dimensional velocity field of eastern North America obtained from more than 14 years (9 years on average) of data at 112 CGPS stations. Bernese GNSS and GITSA software were used for CGPS data processing and position time series analysis, respectively. The results show the counterclockwise rotation of the North American plate in the No-Net-Rotation model with the average of 16.8 ± 0.7 mm/year constrained to ITRF 2008. We also present an ongoing uplift model for the study region based on the present-day CGPS observations. The model shows uplift all over eastern Canada with the maximum rate of 13.7 ± 1.2 mm/year and subsidence to the south mainly over northern USA with a typical rate of −1 to −2 mm/year and the minimum value of −2.7 ± 1.4 mm/year. We compared our model with the rate of radial displacements from the ICE-5G model. Both models agree within 0.02 mm/year at the best stations; however, our model shows a systematic spatial tilt compared to ICE-5G. The misfits between two models amount to the maximum relative subsidence of −6.1 ± 1.1 mm/year to the east and maximum relative uplift of 5.9 ± 2.7 mm/year to the west. The intraplate horizontal velocities are radially outward from the centers of maximum uplift and are inward to the centers of maximum subsidence with the typical velocity of 1–1.6 ± 0.4 mm/year that is in agreement with the ICE-5G model to the first order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others


  • Abramowitz, M., Stegun, I.A. (Eds.), 1972. Handbook of mathematical functions: with formulas, graphs, and mathematical tables, 10th ed. Courier Dover Publications, New York, USA.

  • Adams, J., Basham, P.W., 1991. The seismicity and seismotectonics of eastern Canada. In: Slemmons, D.B., Engdahl, E.R., Zoback, M.D., Blackwell, D.D. (Eds.), Neotectonics of North America, Decade Map Volume 1. Geological Society of America, Boulder, Colorado, pp. 261–276.

  • Agnew, D.C., 1992. The time-domain behavior of power-law noises. Geophys. Res. Lett. 19, 333–336.

  • Altamimi, Z., Collilieux, X., Métivier, L., 2011. ITRF2008: An improved solution of the international terrestrial reference frame. J. Geod. 85, 457–473.

  • Altamimi, Z., Métivier, L., Collilieux, X., 2012. ITRF2008 plate motion model. J. Geophys. Res. Solid Earth 117, B07402.

  • Andrews, J.T., 1991. Late Quaternary glacial isostatic recovery of North America, Greenland, and Iceland: A neotectonics perspective. In: Slemmons, D.B., Engdahl, E.R., Zoback, M.D., Blackwell, D.D. (Eds.), Neotectonics of North America, Decade Map Volume 1. Geological Society of America, Boulder, Colorado, pp. 473–486.

  • Argus, D.F., Peltier, W.R., 2010. Constraining models of postglacial rebound using space geodesy: A detailed assessment of model ICE-5G (VM2) and its relatives. Geophys. J. Int. 181, 697–723.

  • Beavan, J., 2005. Noise properties of continuous GPS data from concrete pillar geodetic monuments in New Zealand and comparison with data from U.S. deep drilled braced monuments. J. Geophys. Res. 110, B08410.

  • Blewitt, G., Lavallée, D., 2002. Effect of annual signals on geodetic velocity. J. Geophys. Res. 107, 2145.

  • Bos, M.S., Fernandes, R.M.S., Williams, S.D.P., Bastos, L., 2008. Fast error analysis of continuous GPS observations. J. Geod. 82, 157–166.

  • Braun, A., Kuo, C.Y., Shum, C.K., Wu, P., van der Wal, W., Fotopoulos, G., 2008. Glacial isostatic adjustment at the Laurentide ice sheet margin: Models and observations in the Great Lakes region. J. Geodyn. 46, 165–173.

  • Calais, E., Han, J.Y., DeMets, C., Nocquet, J.M., 2006. Deformation of the North American plate interior from a decade of continuous GPS measurements. J. Geophys. Res. 111, B06402.

  • CRG, 2015. Centre de recherche en géomatique [WWW Document]. Laval Univ. URL (accessed 1.26.15).

  • Dach, R., Hugentobler, U., Fridez, P., Meindl, M., 2007. The Bernese GPS software version 5.0. Astronomical Institute, University of Bern, Bern, Switzerland.

  • Dow, J.M., Neilan, R.E., Rizos, C., 2009. The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. J. Geod. 83, 191–198.

  • Forbes, D.L., Parkes, G.S., Manson, G.K., Ketch, L.A., 2004. Storms and shoreline retreat in the southern Gulf of St. Lawrence. Mar. Geol. 210, 169–204.

  • George, N. V, Tiampo, K.F., Sahu, S.S., Mazzotti, S., Mansinha, L., Panda, G., 2011. Identification of Glacial Isostatic Adjustment in Eastern Canada Using S Transform Filtering of GPS Observations. Pure Appl. Geophys. 1–11.

  • GGE, 2014. Geodesy and Geomatics Engineering [WWW Document]. Univ. New Brunswick. URL (accessed 12.18.14).

  • Goudarzi, M.A., Cocard, M., Santerre, R., 2013a. EPC: Matlab software to estimate Euler pole parameters. GPS Solut. 18, 153–162.

  • Goudarzi, M.A., Cocard, M., Santerre, R., 2015. Noise behavior in CGPS position time series: the eastern North America case study. Manuscr. Submitt. to J. Geod. Sci.

  • Goudarzi, M.A., Cocard, M., Santerre, R., Woldai, T., 2013b. GPS interactive time series analysis software. GPS Solut. 17, 595–603.

  • Gregersen, S., 2006. Intraplate earthquakes in Scandinavia and Greenland. Neotectonics or postglacial uplift. J. Indian Geophys. Union 10, 25–30.

  • Henton, J.A., Craymer, M.R., Ferland, R., Dragert, H., Mazzotti, S., Forbes, D.L., 2006. Crustal motion and deformation monitoring of the Canadian landmass. Geomatica 60, 173–191.

  • Johansson, J.M., Davis, J.L., Scherneck, H.G., Milne, G.A., Vermeer, M., Mitrovica, J.X., Bennett, R.A., Jonsson, B., Elgered, G., Elósegui, P., Koivula, H., Poutanen, M., Rönnäng, B.O., Shapiro, I.I., 2002. Continuous GPS measurements of postglacial adjustment in Fennoscandia 1. Geodetic results. J. Geophys. Res. 107, 2157.

  • JPL, 2014. GPS Time Series [WWW Document]. Jet Propuls. Lab. Calif. Inst. Technol. URL (accessed 12.19.14).

  • Justino, F., Timmermann, A., Merkel, U., Peltier, W.R., 2006. An Initial Intercomparison of Atmospheric and Oceanic Climatology for the ICE-5G and ICE-4G Models of LGM Paleotopography. J. Clim. 19, 3–14.

  • Klos, A., Bogusz, J., Figurski, M., Kosek, W., 2014. Uncertainties of geodetic velocities from permanent GPS observations: the Sudeten case study. Acta Geodyn. Geomater. 11, 201–209.

  • Kouba, J., 2002. The GPS Toolbox ITRF Transformations. GPS Solut. 5, 88–90.

  • Lambert, A., Courtier, N., Sasagawa, G., Klopping, F., Winester, D., James, T.S., Liard, J.O., 2001. New constraints on Laurentide postglacial rebound from absolute gravity measurements. Geophys. Res. Lett. 28, 2109.

  • Langbein, J., 2004. Noise in two-color electronic distance meter measurements revisited. J. Geophys. Res. 109, B04406.

  • Langbein, J., Johnson, H., 1997. Correlated errors in geodetic time series: Implications for time-dependent deformation. J. Geophys. Res. Solid Earth 102, 591–603.

  • Lavoie, C., Allard, M., Duhamel, D., 2012. Deglaciation landforms and C-14 chronology of the Lac Guillaume-Delisle area, eastern Hudson Bay: A report on field evidence. Geomorphology 159–160, 142–155.

  • Lidberg, M., Johansson, J.M., Scherneck, H.G., Davis, J.L., 2006. An improved and extended GPS-derived 3D velocity field of the glacial isostatic adjustment (GIA) in Fennoscandia. J. Geod. 81, 213–230.

  • Lidberg, M., Johansson, J.M., Scherneck, H.G., Milne, G.A., 2010. Recent results based on continuous GPS observations of the GIA process in Fennoscandia from BIFROST. J. Geodyn. 50, 8–18.

  • Mainville, A., Craymer, M.R., 2005. Present-day tilting of the Great Lakes region based on water level gauges. Geol. Soc. Am. Bull. 117, 1070.

  • Mandelbrot, B.B., 1977. Fractals: form, chance and dimension. Freeman, San Francisco, CA.

  • Mandelbrot, B.B., Van Ness, J.W., 1968. Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10, 422–437.

  • Mao, A., Harrison, C.G.A., Dixon, T.H., 1999. Noise in GPS coordinate time series. J. Geophys. Res. 104, 2797–2816.

  • Mazzotti, S., James, T.S., Henton, J.A., Adams, J., 2005. GPS crustal strain, postglacial rebound, and seismic hazard in eastern North America: The Saint Lawrence valley example. J. Geophys. Res. 110, B11301.

  • MERNQ, 2014. Geodetics and GPS Technology [WWW Document]. Minist. Energy Nat. Resour. Quebec. URL (accessed 12.17.14).

  • Mitrovica, J.X., Milne, G.A., Davis, J.L., 2001. Glacial isostatic adjustment on a rotating earth. Geophys. J. Int. 147, 562–578.

  • NGS, 2014a. Continuously Operating Reference Station (CORS) [WWW Document]. Am. Natl. Geod. Surv. URL (accessed 12.17.14).

  • NGS, 2014b. National Geodetic Survey [WWW Document]. Natl. Ocean Atmos. Adm. URL (accessed 12.19.14).

  • Niell, A.E., 1996. Global mapping functions for the atmosphere delay at radio wavelengths. J. Geophys. Res. 101, 3227–3246.

  • Nikolaidis, R.M., 2002. Observation of geodetic and seismic deformation with the Global Positioning System (Ph.D. Thesis). University of California, San Diego, San Diego.

  • NRCan, 2014. Canadian Active Control System [WWW Document]. Nat. Resour. Canada. URL (accessed 12.17.14).

  • O’Reilly, C.T., Forbes, D.L., Parkes, G.S., 2005. Defining and adapting to coastal hazards in Atlantic Canada: Facing the challenge of rising sea levels, storm surges, and shoreline erosion in a changing climate. In: Chircop, A., McConnell, M. (Eds.), Ocean Yearbook 19. University of Chicago Press, Chicago, IL, pp. 189–207.

  • Occhietti, S., 1987. Dynamique de l’inlandsis laurentidien du Sangamonien à l’Holocène. Géographie Phys. Quat. 41, 301–313.

  • Park, K.D., Nerem, R.S., Davis, J.L., Schenewerk, M.S., Milne, G.A., Mitrovica, J.X., 2002. Investigation of glacial isostatic adjustment in the northeast US using GPS measurements. Geophys. Res. Lett. 29, 1509.

  • Peltier, W.R., 1998. Postglacial variations in the level of the sea: Implications for climate dynamics and solid-Earth geophysics. Rev. Geophys. 36, 603.

  • Peltier, W.R., 2002. Global glacial isostatic adjustment: palaeogeodetic and space-geodetic tests of the ICE-4G (VM2) model. J. Quat. Sci. 17, 491–510.

  • Peltier, W.R., 2004. Global Glacial Isostasy and the Surface of the Ice-Age Earth: The ICE-5G (VM2) Model and GRACE. Annu. Rev. Earth Planet. Sci. 32, 111–149.

  • Peltier, W.R., Argus, D.F., Drummond, R., 2014. Space geodesy constrains ice age terminal deglaciation: The global ICE-6G_C (VM5a) model. J. Geophys. Res. Solid Earth 2014, JB011176.

  • QGIS, D.T., 2015. QGIS Geographic Information System.

  • Richmond, G.M., Fullerton, D.S., 1986. Summation of quaternary glaciations in the United States of America. Quat. Sci. Rev. 5, 183–196.

  • SCG, 2014. Department of Geomatics Sciences [WWW Document]. Laval Univ. URL (accessed 12.19.14).

  • Sella, G.F., Stein, S., Dixon, T.H., Craymer, M.R., James, T.S., Mazzotti, S., Dokka, R.K., 2007. Observation of glacial isostatic adjustment in “stable” North America with GPS. Geophys. Res. Lett. 34, 2306.

  • Sella, G.F., Stein, S., Wdowinski, S., Dixon, T.H., Craymer, M.R., James, T.S., 2004. Direct constraints on GIA motion in North America using GPS. In: AGU Spring Meeting Abstracts. p. 3.

  • Teferle, F.N., Williams, S.D.P., Kierulf, H.P., Bingley, R.M., Plag, H.P., 2008. A continuous GPS coordinate time series analysis strategy for high-accuracy vertical land movements. Phys. Chem. Earth 33, 205–216.

  • Tiampo, K.F., Mazzotti, S., James, T.S., 2012. Analysis of GPS Measurements in Eastern Canada Using Principal Component Analysis. Pure Appl. Geophys. 169, 1483–1506.

  • Toscano, M.A., Peltier, W.R., Drummond, R., 2011. ICE-5G and ICE-6G models of postglacial relative sea-level history applied to the Holocene coral reef record of northeastern St Croix, U.S.V.I.: investigating the influence of rotational feedback on GIA processes at tropical latitudes. Quat. Sci. Rev. 30, 3032–3042.

  • Trauth, M.H., 2010. MATLAB recipes for Earth Sciences, 3rd ed. Springer.

  • Tregoning, P., Welsh, A., McQueen, H., Lambeck, K., 2000. The search for postglacial rebound near the Lambert Glacier, Antarctica. Earth Planets Sp. 52, 1037–1041.

  • Tushingham, A.M., Peltier, W.R., 1991. Ice-3G: a new global model of Late Pleistocene deglaciation based upon geophysical predictions of post-glacial relative sea level change. J. Geophys. Res. 96, 4497–4523.

  • van der Wal, W., Braun, A., Wu, P., Sideris, M.G., 2009. Prediction of decadal slope changes in Canada by glacial isostatic adjustment modelling. Can. J. Earth Sci. 46, 587–595.

  • Wahr, J., DaZhong, H., Trupin, A., 1995. Predictions of vertical uplift caused by changing polar ice volumes on a viscoelastic Earth. Geophys. Res. Lett. 22, 977–980.

  • Williams, S.D.P., 2003. The effect of coloured noise on the uncertainties of rates estimated from geodetic time series. J. Geod. 76, 483–494.

  • Williams, S.D.P., 2008. CATS: GPS coordinate time series analysis software. GPS Solut. 12, 147–153.

  • Williams, S.D.P., Bock, Y., Fang, P., Jamason, P., Nikolaidis, R.M., Prawirodirdjo, L., Miller, M., Johnson, D.J., 2004. Error analysis of continuous GPS position time series. J. Geophys. Res. 109, B03412.

  • Zhang, J., Bock, Y., Johnson, H., Fang, P., Williams, S.D.P., Genrich, J., Wdowinski, S., Behr, J., 1997. Southern California Permanent GPS Geodetic Array: Error analysis of daily position estimates and site velocities. J. Geophys. Res. Solid Earth 102, 18035–18055.

Download references


This project has been partly funded by the grants of the National Sciences and Engineering Research Council of Canada and the Faculty of Forestry, Geography, and Geomatics of Laval University for the second and the third author. We gratefully thank the anonymous reviewers who helped to improve the quality of the manuscript by their comments. We used the following software as well as those mentioned in the text: MATLAB for numerical calculations, Quantum GIS software (QGIS 2015), and GIMP and Inkscape for preparing figures.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Mohammad Ali Goudarzi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goudarzi, M.A., Cocard, M. & Santerre, R. Present-Day 3D Velocity Field of Eastern North America Based on Continuous GPS Observations. Pure Appl. Geophys. 173, 2387–2412 (2016).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: